Methane paradox revisited: Unravelling the impacts of eutrophication on microbia...
Methane paradox revisited: Unravelling the impacts of eutrophication on microbial methane cycling in aquatic ecosystems
Aquatic ecosystems are a major source of the potent greenhouse gas methane, accounting for half of the global methane emissions. Biogenic methane is microbially produced in anoxic sediments and typically rapidly consumed by methan...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AMOPROX
Quantifying Aerobic Methane Oxidation in the Ocean Calibrat...
1M€
Cerrado
CTM2009-13926-C02-02
CARACTERIZACION MOLECULAR DE LAS COMUNIDADES MICROBIANAS DEL...
68K€
Cerrado
TibetMeth
Microbial Biomarker Records in Tibetan Peats Monsoon Variab...
279K€
Cerrado
WETLAND-ECOSYSBIOL
The hidden sulfur cycle in freshwater wetlands an eco syste...
100K€
Cerrado
FJCI-2016-29561
Microbiologia terrestre y acuática en el marco del Cambio Gl...
50K€
Cerrado
TIBETMETH
Microbial Biomarker Records in Tibetan Peats Monsoon Variab...
15K€
Cerrado
Información proyecto METHANIAQ
Duración del proyecto: 59 meses
Fecha Inicio: 2024-03-01
Fecha Fin: 2029-02-28
Líder del proyecto
UNIVERSITAT WIEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Aquatic ecosystems are a major source of the potent greenhouse gas methane, accounting for half of the global methane emissions. Biogenic methane is microbially produced in anoxic sediments and typically rapidly consumed by methanotrophic microorganisms, largely limiting emissions to the atmosphere. However, methane concentrations are often elevated in oxic surface waters of oceans and lakes (“methane paradox”). Aerobic methane production in surface waters might constitute a particularly important source of methane, which, due its proximity to the atmosphere, might escape the aquatic “microbial methane filter”. Yet, we currently lack a comprehensive understanding of the involved processes and microorganisms. Moreover, enhanced eutrophication of coastal ocean and lake ecosystems has been linked to increased methane emissions. Despite the immense importance of methane-cycling microorganisms in controlling emissions from these systems, we know remarkably little on how changes in environmental conditions affect their in situ activities.The METHANIAQ project addresses these knowledge gaps by 1) resolving and quantifying aerobic methane production in surface waters of aquatic ecosystems with different trophic states, and 2) unravelling how eutrophication affects methane-consuming microorganisms in water columns of coastal ocean and lake ecosystems. To tackle these objectives, I will use an innovative combination of approaches, comprising in situ measurements of biogeochemical process rates, manipulation experiments under controlled laboratory conditions, and cutting-edge molecular methods to analyze microbial communities. The proposed approaches will provide an integrated view from the scales of enzymes and microorganisms to ecosystem-level processes spanning marine and freshwater ecosystems. I expect this cross-disciplinary project to generate essential insights into methane cycling dynamics in aquatic ecosystems and their effect on the global climate.