The need for mitochondria in the body is ubiquitous yet the shapes these organelles take vary widely across tissues and change rapidly in response to nutrient availability. How and why this occurs is not well understood. Therefo...
The need for mitochondria in the body is ubiquitous yet the shapes these organelles take vary widely across tissues and change rapidly in response to nutrient availability. How and why this occurs is not well understood. Therefore, we propose an interdisciplinary research program that will investigate the molecular basis and metabolic regulation of mitochondrial morphology. Mitochondrial morphology is defined by opposing events of fission and fusion, which must be tightly controlled. We discovered that accelerated mitochondrial fission impairs cardiac metabolism and causes heart failure in mice, revealing an intriguing link between mitochondrial dynamics and metabolism. Seeking to understand how metabolic signals drive mitochondrial fission, we will characterize the inner membrane protein MTP18, whose fission activity is controlled by the PI3K nutrient-signalling pathway. First, we will define the interactome of MTP18 to discover the molecular components of the inner membrane fission machinery. Second, we will investigate the how mitochondrial fission is regulated by PI3K nutrient-signalling pathway the heart, liver, and kidney. We will determine whether cardiac dysfunction, liver cancer, and kidney failure caused by over-active PI3K signalling in the mouse can be rescued by blunting the downstream activity of MTP18 and re-balancing mitochondrial dynamics. Third, we will determine the disease relevance of mitochondrial fission in humans. For the first time, mitochondrial morphology from patient-derived cells will be evaluated in automated, high content screens to identify human mutations that drive imbalanced mitochondrial dynamics in a truly unbiased manner. Genome-wide RNAi screens in these cells will reveal novel modulators of mitochondrial dynamics. Taken together, this work aims to understand the metabolic pathways that control mitochondrial morphology and to develop a new technology to identify yet unknown modulators of mitochondrial dynamics.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.