MEtabolic Cell Reprogramming for the Recovery of Lost INsulin Producing Cells
My group aims at fostering the regeneration of insulin-producing β-cells in the diabetic pancreas by promoting the reprogramming of other islet endocrine non-β cells. I will use mice and human islets to trigger the metabolic repro...
My group aims at fostering the regeneration of insulin-producing β-cells in the diabetic pancreas by promoting the reprogramming of other islet endocrine non-β cells. I will use mice and human islets to trigger the metabolic reprogramming of: i) peripheral organs, in order to reduce hyperglycemia, and ii) human islet non-β-cells, to induce their acquisition of insulin secretion.
I developed transgenics to elicit total (>99%) or graded (5-90%) β-cell loss. These mice revealed that non-β-cells, which produce other hormones, can naturally switch to insulin production upon β-cell loss, and lead to diabetes recovery. My group recently showed that human non-β-cells, from healthy or diabetic donors, also display plasticity and can engage in regulated insulin secretion.
What metabolic adaptations occur in peripheral organs in response to insulin deficiency, but without complications? Can metabolic reprogramming of peripheral organs, based on these adaptations, suffice to control glycemia? Can metabolic reprogramming change the identity of a cell?
Natural recovery of euglycemia after β-cell loss is documented in mice. To know the mechanisms driving relief, my lab will characterize islet cell dynamics and circulating molecules (metabolites, RNA, peptides) after various degrees of β-cell loss. We will perform a full analysis of blood and peripheral organs in recovered mice, and an array of genetic and pharmacological experiments modulating BAT mass and function to test its role in taming hyperglycemia.
We will explore and define the metabolic differences between human β- and non-β-cells. Using monotypic pseudoislets we will do RNAseq, proteomics and metabolomics after exposure to glucose. We will quantify oxygen consumption, extracellular acidification and ATP production in response to nutrients and metabolic toxins. From this, we will genetically (CRIPR-Cas9) and chemically reprogram the metabolism of human non-β-cells to boost the expression of β-like genes.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.