MEtabolic Cell Reprogramming for the Recovery of Lost INsulin Producing Cells
My group aims at fostering the regeneration of insulin-producing β-cells in the diabetic pancreas by promoting the reprogramming of other islet endocrine non-β cells. I will use mice and human islets to trigger the metabolic repro...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BCELL-T2D
Role of pancreatic beta cell regeneration in the pathofisiol...
100K€
Cerrado
SAF2008-02469
REGENERACION DE CELULAS BETA PRODUCTORAS DE INSULINA
146K€
Cerrado
BetaRegeneration
Induction of Insulin producing beta cells Regeneration in vi...
2M€
Cerrado
PID2019-106160RB-I00
REGENERACION DE CELULAS BETA A PARTIR DE PROGENITORES ENDOGE...
218K€
Cerrado
SAF2008-03116
REGULACION EPIGENETICA Y PLASTICIDAD DE LAS CELULAS BETA PAN...
358K€
Cerrado
SAF2008-02469
REGENERACION DE CELULAS BETA PRODUCTORAS DE INSULINA
146K€
Cerrado
Información proyecto Merlin
Duración del proyecto: 63 meses
Fecha Inicio: 2020-05-11
Fecha Fin: 2025-08-31
Líder del proyecto
UNIVERSITE DE GENEVE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
My group aims at fostering the regeneration of insulin-producing β-cells in the diabetic pancreas by promoting the reprogramming of other islet endocrine non-β cells. I will use mice and human islets to trigger the metabolic reprogramming of: i) peripheral organs, in order to reduce hyperglycemia, and ii) human islet non-β-cells, to induce their acquisition of insulin secretion.
I developed transgenics to elicit total (>99%) or graded (5-90%) β-cell loss. These mice revealed that non-β-cells, which produce other hormones, can naturally switch to insulin production upon β-cell loss, and lead to diabetes recovery. My group recently showed that human non-β-cells, from healthy or diabetic donors, also display plasticity and can engage in regulated insulin secretion.
What metabolic adaptations occur in peripheral organs in response to insulin deficiency, but without complications? Can metabolic reprogramming of peripheral organs, based on these adaptations, suffice to control glycemia? Can metabolic reprogramming change the identity of a cell?
Natural recovery of euglycemia after β-cell loss is documented in mice. To know the mechanisms driving relief, my lab will characterize islet cell dynamics and circulating molecules (metabolites, RNA, peptides) after various degrees of β-cell loss. We will perform a full analysis of blood and peripheral organs in recovered mice, and an array of genetic and pharmacological experiments modulating BAT mass and function to test its role in taming hyperglycemia.
We will explore and define the metabolic differences between human β- and non-β-cells. Using monotypic pseudoislets we will do RNAseq, proteomics and metabolomics after exposure to glucose. We will quantify oxygen consumption, extracellular acidification and ATP production in response to nutrients and metabolic toxins. From this, we will genetically (CRIPR-Cas9) and chemically reprogram the metabolism of human non-β-cells to boost the expression of β-like genes.