Mesoscale Quantum Dissipation with Applications to Nanotechnolgy
Quantum dissipation arising from quantum fluctuations and the quantum mechanics of macroscopic variables is important because of the ever decreasing size (mesoscale) of the nanoparticles used in technology. The most striking examp...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SPINMET
Spin related phenomena in mesoscopic transport
396K€
Cerrado
BES-2016-076466
MAGNETISMO EN LA NANOESCALA: EXPLORANDO NUEVAS RUTAS (FISICA...
93K€
Cerrado
PGC2018-101689-B-I00
DISPOSITIVOS MOLECULARES DESDE EL PUNTO DE VISTA DE LA QUIMI...
46K€
Cerrado
FIS2014-53385-P
FASES TOPOLOGICAS EN NANOELECTRONICA CUANTICA DE ESPINES
42K€
Cerrado
Dynasore
Dynamical magnetic excitations with spin orbit interaction i...
2M€
Cerrado
MAT2008-04706
MODELADO A ESCALA NANOMETRICA DE LA DINAMICA DE LA MAGNETIZA...
102K€
Cerrado
Información proyecto NANOMAGNETS
Líder del proyecto
UNIVERSITE DE PERPIGNAN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
50K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Quantum dissipation arising from quantum fluctuations and the quantum mechanics of macroscopic variables is important because of the ever decreasing size (mesoscale) of the nanoparticles used in technology. The most striking example occurs in information storage by magnetic nanoparticles, where the governing factor for magnetisation reversal by macroscopic quantum tunnelling is spin size S. The S dependence, with associated large quantum effects, becomes evermore marked as one proceeds from single domain particles to molecular clusters to single molecule magnets to individual spins. Here in the context of a general investigation of mesoscale quantum mechanics of particles (separable and additive Hamiltonians) and spins it is proposed to generalise Wigner’s quasi phase space formulation of quantum mechanics without dissipation (originally used to calculate quantum corrections to classical statistical mechanics i.e. the quantum/classical borderline characteristic of the mesoscale), to systems with non-separable Hamiltonians (spins) including the effects of dissipation to the surrounding heat bath. The results, obtained by (a) matrix continued fraction methods of solution of the appropriate master equations (b) computer simulation and (c) quantum Kramers escape rate theory will be compared with suitable experimental observations of the escape rate and the associated susceptibilities of nanoparticles.