Memory effects in Electron DYNamics a connector Approach
Many materials properties are determined by the dynamics of electrons and spectroscopic features due to electronic excitations. One of the most efficient approaches to describe these properties in principle is Time-Dependent Densi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MODENADYNA
MODeling Electron Non Adiabatic DYNAmics
249K€
Cerrado
DEDOM
Development of Density Functional Theory methods for Organic...
1M€
Cerrado
FIS2009-09631
EXCITACIONES ELECTRONICAS Y EFECTOS DE MUCHOS CUERPOS EN SOL...
44K€
Cerrado
topDFT
A topological approach to electron correlation in density fu...
2M€
Cerrado
RelPro
Relativistic non linear optical property calculations with d...
159K€
Cerrado
High level CDFT
Conquering New Frontiers in Conceptual Density Functional Th...
226K€
Cerrado
Información proyecto MEDYNA
Duración del proyecto: 35 meses
Fecha Inicio: 2021-03-22
Fecha Fin: 2024-02-28
Líder del proyecto
ECOLE POLYTECHNIQUE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
185K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Many materials properties are determined by the dynamics of electrons and spectroscopic features due to electronic excitations. One of the most efficient approaches to describe these properties in principle is Time-Dependent Density Functional Theory (TDDFT). In this framework, however, many interesting phenomena, such as Rabi oscillations or satellites in excitation spectra, depend on the history of the evolution of the system in time. This fact is completely neglected in the most commonly used, adiabatic, approximations.
The researcher, Dr. Lionel Lacombe and the host supervisor, Prof. Lucia Reining, aim at developing new practical schemes to identify and retrieve memory dependent effects in materials. This requires the development of efficient density functionals as a key ingredient to access new physics stemming from non-adiabatic phenomena at a low numerical cost. The strategy links computation on model systems and realistic materials through a formal approach, termed Connector Theory (COT). In the model systems, this requires the development of new diagrammatic Green’s functions expansions. Both widely used models, in particular the homogeneous electron gas, and more flexible systems will be considered. For the real materials, only simple approximations have to be evaluated, since COT allows to improve the results by orders of magnitude using the model knowledge. The method will be applied to predict the charge and spin dynamics, and photoabsorption spectra. Moreover, the model results will be tabulated and made freely available, which opens the way for understanding and predictions of many more materials and phenomena.