Innovating Works

MultiMelt

Financiado
Melting and dissolution across scales in multicomponent systems
Melting and dissolution induce temperature and concentration gradients in liquid systems. These gradients induce flows, namely buoyancy driven flows on large scales and phoretic flows on small scales. Such flows locally enhance or... Melting and dissolution induce temperature and concentration gradients in liquid systems. These gradients induce flows, namely buoyancy driven flows on large scales and phoretic flows on small scales. Such flows locally enhance or delay the melting or dissolution process and thus determine the objects’ shape. On large scales, a relevant example for the climate are glaciers and icebergs melting into the ocean, where cold and fresh meltwater experiences buoyant forces against the surrounding ocean water, leading to flow instabilities, thus shaping the ice and determining its melting rate. Another example is the dissolution of liquid CO2 in brine for CO2 sequestration. Next to buoyant forces also phoretic forces along the interfaces come into play. For dissolving drops at the microscale the phoretic forces become dominant. The resulting Marangoni flow not only affects their dissolution rate, but can also lead to their autochemotactic motion, deformation, or even splitting. In spite of the relevance for these and many other applications, such multicomponent, multiphase systems with melting or dissolution phase transitions are poorly understood, due to their complexity, multiway coupling, feedback mechanisms, memory effects & collective phenomena. The objective of this project is a true scientific breakthrough: We want to come to a quantitative understanding of melting & dissolution processes in multicomponent, multiphase systems, across all scales and on a fundamental level. To achieve this, we perform a number of key controlled experiments & numerical simulations for idealized setups on various length scales, inspired by above sketched problems, but allowing for a one-to-one comparison between experiments and numerics/theory. For the first time, we will perform local measurements of velocity, salt concentration, and temperature and connect them to global transport processes, to arrive at a fundamental understanding of such Stefan problems in multicomponent systems. ver más
31/10/2028
3M€
Duración del proyecto: 65 meses Fecha Inicio: 2023-05-15
Fecha Fin: 2028-10-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-05-15
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2022-ADG: ERC ADVANCED GRANTS
Cerrada hace 2 años
Presupuesto El presupuesto total del proyecto asciende a 3M€
Líder del proyecto
UNIVERSITEIT TWENTE No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5