Hybridization between related species resulting in allopolyploidy is ubiquitous in the evolutionary history of plants. Such nascent allopolyploids face the challenge of ensuring accurate chromosome segregation during meiosis in th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-108195GB-I00
GENOMICA EVOLUTIVA INTEGRADA DEL SISTEMA MODELO POLYPLOIDE B...
237K€
Cerrado
AGL2012-38852
ANALISIS DE LA MEIOSIS EN PLANTAS UTILIZANDO MUTACIONES GENI...
94K€
Cerrado
PID2019-103996RB-I00
ESTUDIO DEL RECONOCIMIENTO Y ASOCIACION DE LOS CROMOSOMAS HO...
178K€
Cerrado
PGC2018-098358-B-I00
AUTOPOLIPLOIDIA Y DIVERGENCIA ECOLOGICA: UNA APROXIMACION TR...
162K€
Cerrado
AGL2015-64833-R
ESTUDIO DE LAS SECUENCIAS SUBTELOMERICAS QUE PARTICIPAN EN E...
97K€
Cerrado
BFU2008-00459
ARABIDOPSIS THALIANA, UN ORGANISMO MODELO PARA EL ESTUDIO DE...
145K€
Cerrado
Información proyecto MeioPoly
Duración del proyecto: 62 meses
Fecha Inicio: 2023-10-10
Fecha Fin: 2028-12-31
Descripción del proyecto
Hybridization between related species resulting in allopolyploidy is ubiquitous in the evolutionary history of plants. Such nascent allopolyploids face the challenge of ensuring accurate chromosome segregation during meiosis in the presence of related, but non-identical chromosome sets (called homoeologues), inherited from the allopolyploid’s progenitors. Essential for fertility, this relies upon the formation of physical connections (crossovers) between homologous chromosomes, while crossovers between homoeologues - that could lead to aneuploidy - must be prevented. Meiotic stability in the allopolyploid context thus requires a tight control of recombination partner choice. The existence of highly fertile natural allopolyploids shows that solutions exist and have arisen many times during evolution, but the mechanisms involved remain poorly understood. My goal is to elucidate the evolutionary processes of meiotic stabilization of nascent allopolyploids, with a special emphasis on the molecular mechanisms that prevent recombination between homoeologous chromosomes. I propose to recreate in the lab the natural hybridization that happened ~16 Kya between A. thaliana and A. arenosa leading to Arabidopsis suecica in order to characterize the mechanisms underlying the evolution of the young allopolyploids over the first generations as they acquire meiotic stability and full fertility. The proposed project has three main objectives: (1) map and characterize genome-wide recombination between homoeologues; (2) identify the factors that control homoeologous pairing and recombination and (3) elucidate how this control is progressively set up in newly formed allopolyploids. Our studies have the potential to bring new and fundamental insights on the evolutionary processes enabling meiotic stabilization of nascent allopolyploids and to contribute to polyploid crop improvement through knowledge transfer to plant breeding programs.