Medical First Responder Training using a Mixed Reality Approach featuring haptic...
Medical First Responder Training using a Mixed Reality Approach featuring haptic feedback for enhanced realism
Mass-casualty incidents with injured persons caused by human-made or by natural disasters are increasing globally. In such situations, medical first responders (MFR) need to perform basic life support and first aid to help stabili...
Mass-casualty incidents with injured persons caused by human-made or by natural disasters are increasing globally. In such situations, medical first responders (MFR) need to perform basic life support and first aid to help stabilize victims until arrival of further support. Proper evaluation of situations, checking and monitoring the vital states, and choosing the most appropriate strategy for proceeding with treatments are challenges. However, current training abilities for such scenarios are limited.
The MED1stMR consortium has identified Mixed Reality (MR) training as opportunity to better train and prepare MFRs for disasters. Thus, MED1stMR will develop a new generation of MR training providing haptic feedback through the integration of high-fidelity patient simulation manikins into MR. Thereby, MED1stMR offers a much richer sensory experience bringing MR training closer to reality. To enhance the effectiveness of MR training a physiological signal and trainee behavior feedback loop will be integrated for scenario control. In this respect, wearable technologies with body sensors will be developed allowing to monitor states and behaviour of MFR during training. Together with a model for effective performance in medical emergencies (EPME) this data will enable adapting training to trainee needs, manually or by artificial intelligence driven smart scenarios. Partnering MFR will be included in the project developments by an Agile End User Centred Research Methodology.
To this end, MED1stMR will pursue the following pioneering objectives: a) Developing a pioneering MR training approach for enhanced realism, b) Developing effective training scenarios and a training curriculum through user-centred design with cross-sectoral MFR, c) Realisation of a physiological signal and trainee behaviour feedback loop and EPME model for smart scenario control thereby enhancing effectiveness of MR training and d) To position the pioneering MR training approach across Europever más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.