Our tissues, in particular collagen as the most abundant protein in our body, are constantly exposed to mechanical loads, reaching multiples of the body weight. In artificial polymers, mechanical loads are known for a century to c...
ver más
30-11-2024:
Cataluña Gestión For...
Se ha cerrado la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
29-11-2024:
IDAE
En las últimas 48 horas el Organismo IDAE ha otorgado 4 concesiones
29-11-2024:
ECE
En las últimas 48 horas el Organismo ECE ha otorgado 2 concesiones
Descripción del proyecto
Our tissues, in particular collagen as the most abundant protein in our body, are constantly exposed to mechanical loads, reaching multiples of the body weight. In artificial polymers, mechanical loads are known for a century to cause radical formation and chemical degradation processes. Mechanoradicals from bond ruptures, being highly reactive and oxidising, deteriorate the material, leading to stiffening and ageing. Ageing of organic tissue is a fundamental problem in health and disease, but a role of mechanoradicals has been a blind spot. Our simple but novel idea is to test the role of mechanoradicals for ageing of biomaterials. As a starting point, we have recently uncovered mechanoradicals in tensed tendon collagen. They readily react with water to form reactive oxygen species (ROS), key signalling molecules in a multitude of physiological processes including ageing.
I hypothesise that mechanoradicals generate a feedback loop resulting in accelerated collagen ageing. Using a scale-bridging combined computational and experimental approach, I will dissect the full lifecycle of mechanoradicals in collagen, from bond scission and radical migration to ROS formation, to uncover new mechanisms of radical-mediated ageing. We will perform quantum chemical calculations and Molecular Dynamics (MD) simulations, including a new reactive Monte Carlo/MD scheme, to identify scissile bonds and subsequent radical reactions in atomistic collagen I fibril models. For validation, a combination of electron-paramagnetic resonance spectroscopy, mass spectrometry and other biophysical experiments will be employed to measure degradation pathways, radicals and ROS under varying crosslink densities and types as present in young, aged and diseased tendon tissues.
RADICOL will establish protein mechanoradicals as an as yet uncovered source of oxidative stress, and as a new paradigm of biological mechanosensation and ageing.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.