Innovating Works

KAPTION

Financiado
Mechanisms of Kaposi's sarcoma herpesvirus replication and maintenance during la...
Oncogenic viruses are the third most common cause of cancer in humans. Kaposi’s sarcoma herpesvirus (KSHV) is an oncogenic virus that establishes life-long latent infection and can drive tumor development in immunocompromised indi... Oncogenic viruses are the third most common cause of cancer in humans. Kaposi’s sarcoma herpesvirus (KSHV) is an oncogenic virus that establishes life-long latent infection and can drive tumor development in immunocompromised individuals. To date no definitive treatment against KSHV has been developed and KSHV-derived cancers are uncurable. Despite the advances in understanding KSHV biology, many key aspects are still obscure, and detailed mechanistic studies are needed for the development of rational targeted therapies. During latency, KSHV exploits the host cell’s replication and segregation machineries to faithfully copy and transmit its genome during cell division. Which cellular proteins contribute to these processes and what mechanisms enable the virus to preserve its genome over time remain poorly dissected. I will remodel the Xenopus laevis egg extract in vitro system, which has been successfully applied to study eukaryotic replication and chromosome segregation, to incorporate the key components of KSHV maintenance and generate a unique tool to dissect the mechanisms of KSHV latency in a test tube. With this innovative system in hand and strong of a previously developed powerful mass-spectrometry workflow for protein identification, my group will overcome the limitations of the current methodologies to answer two main questions. (1) What is the extent of the host’s proteome that contributes to KSHV maintenance? (2) What are the molecular mechanisms that drive faithful segregation of the viral genome? Corroborated by parallel experiments in KSHV infected cells, these ground-breaking findings will answer long-standing questions on the latency of KSHV, setting a solid base for the development of targeted therapies. Furthermore, the newly developed latency system in Xenopus egg extract will emerge as a powerful tool for solving puzzling aspects of the biology of other latently infecting viruses. ver más
31/05/2029
1M€
Duración del proyecto: 66 meses Fecha Inicio: 2023-11-17
Fecha Fin: 2029-05-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-11-17
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2023-STG: ERC STARTING GRANTS
Cerrada hace 2 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
UNIVERSITA DEGLI STUDI DI PADOVA No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5