Mechanisms of human co-translational quality control and it’s role in neural tis...
Mechanisms of human co-translational quality control and it’s role in neural tissue.
Ribosome-associated quality control (RQC) is crucial for degrading truncated nascent proteins produced on aberrant mRNAs. This is done by elongation of the nascent chain on the large ribosomal subunit in the absence of mRNA and th...
ver más
30/06/2029
MU
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
Masarykova univerzita
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto NeuroQuality
Duración del proyecto: 68 meses
Fecha Inicio: 2023-10-02
Fecha Fin: 2029-06-30
Líder del proyecto
Masarykova univerzita
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Ribosome-associated quality control (RQC) is crucial for degrading truncated nascent proteins produced on aberrant mRNAs. This is done by elongation of the nascent chain on the large ribosomal subunit in the absence of mRNA and the small ribosomal subunit (CAT tailing) and by marking the nascent chain for degradation. Mutations in RQC components cause neurodegeneration both in animal models and human patients. Moreover, RQC insufficiency and subsequent protein aggregation critically contribute to proteostasis impairment and systemic decline during ageing. Strikingly, we lack mechanistic understanding of this crucial process in humans.
This project stems from my post-doctoral research, in which I have solved the structure of the yeast RQC complex and discovered a novel RQC factor, the eIF5A. This conserved protein is critical in yeast RQC and was recently implicated in brain development and Huntington's disease. Moreover, I have developed a human cell-free translation extract, which enables structural studies of co-translational processes in the human system. In the proposed research, we will provide mechanistic understanding of CAT tailing and nascent chain degradation in human RQC using cryo-EM. We will define working principles of RQC components and the mechanisms by which their disease-causing mutations specifically affect neurons in vivo using the C. elegans as a model organism.
Our approach utilizes a multidisciplinary approach to provide detailed mechanistic understanding of the critical RQC system in combination with an in vivo study to reveal processes leading to RQC-driven pathological changes in neural tissue. Since the RQC pathway is conserved in all kingdoms of life and serves a pivotal role in protein homeostasis with critical implications for neurodegenerative disorders and ageing, our findings will have important implications for human health and the potential to reveal novel drug targets.