Mechanism and significance of de novo gene methylation during reproduction in Ma...
Mechanism and significance of de novo gene methylation during reproduction in Marchantia
DNA methylation plays fundamental roles in gene regulation and cell identity in plants and animals. However, these two kingdoms exhibit distinct methylation patterns and reprogramming of methylation during development occurs in di...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EUR2021-122005
RECLUTAMIENTO DE POLYCOMB DURANTE LA TRANSICION DE CICLO CEL...
100K€
Cerrado
REASONING
The moleculaR mEchAnismS Of dNa methylatIon reprogrammiNg in...
199K€
Cerrado
GeneBodyMethylation
Resolving the Nuts and Bolts of Gene Body Methylation
2M€
Cerrado
TE-Time
Dissecting host-transposon interactions during germline deve...
196K€
Cerrado
PID2021-123635NB-I00
COMPRENDER EL PAPEL DE LA METILACION DEL ADN EN PROMOTORES C...
182K€
Cerrado
BFU2008-01976
DINAMICA DE LAS MODIFICACIONES DE LAS HISTONAS EN LA CROMATI...
85K€
Cerrado
Información proyecto EPIC
Duración del proyecto: 50 meses
Fecha Inicio: 2022-06-12
Fecha Fin: 2026-08-15
Descripción del proyecto
DNA methylation plays fundamental roles in gene regulation and cell identity in plants and animals. However, these two kingdoms exhibit distinct methylation patterns and reprogramming of methylation during development occurs in different ways. I have exciting evidence from the emerging model plant system Marchantia polymorpha of de novo DNA methylation at thousands of genes in the embryo that is analogous to gene methylation established in the oocyte of mammals. A subset of these genes are also methylated in the Marchantia male sex organ prior to fertilisation and are enriched for roles in hormone signalling, epigenetics, and developmental transitions, indicating parental imprinting events important for embryo development. I propose to conduct a targeted dissection of this phenomenon. I will be hosted first by Prof. Ecker (Salk Institute, US), who is a world leader in single cell epigenomics. I will carry out high-throughput single cell methylomics and transcriptomics in combination with other cutting-edge molecular techniques to precisely determine the developmental processes undergoing gene methylation reprogramming as well as the underlying epigenetic players involved. In the return phase, I will be hosted by Prof. Solano (Centro Nacional de Biotecnología, Spain) who is an expert in motif analysis and Marchantia hormone biology. With his expertise I will investigate the methylation targeting mechanism and will utilise methylation loss lines to confirm the role of gene methylation in transcriptional regulation as well as development, with a focus on ethylene signalling. This proposal represents a state-of-the-art class of study of DNA methylation through which I will broaden my scientific knowledge, develop complementary skills such as lab management and science outreach, and extend my professional network internationally. The experiences gained during this Fellowship will be essential to achieve my goal of leading a research group at the forefront of epigenetics.