Mechanics of slow earthquake phenomena an Integrated perspective from the Compo...
Mechanics of slow earthquake phenomena an Integrated perspective from the Composition geometry And rheology of plate boundary faults
Major tectonic faults have, until recently, been thought to accommodate displacement by either continuous creep or episodic, damaging earthquakes. High-resolution geophysical networks have now detected ‘slow earthquakes’, transien...
ver más
30/06/2023
CARDIFF UNIVERSITY
1M€
Presupuesto del proyecto: 1M€
Líder del proyecto
CARDIFF UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
Descripción del proyecto
Major tectonic faults have, until recently, been thought to accommodate displacement by either continuous creep or episodic, damaging earthquakes. High-resolution geophysical networks have now detected ‘slow earthquakes’, transient modes of displacement that are faster than creep but slower than earthquakes. This project aims to illuminate the unknown mechanism behind slow earthquakes, through an integrated, multi-scale approach. MICA uses the unique natural laboratory of exhumed and active faults, to build numerical models constrained by observed fault geometry and microstructurally defined deformation mechanisms, to determine, for the first time, the rheology of slow slip.
The first objective is to create a model of the slow earthquake source, to constrain the micro- to kilometre-scale internal geometry of plate boundary faults, and the spatial distribution of deformation mechanisms. Fault rocks also retain a deformation sequence, allowing insight to how deformation style evolves with time. Thus, a combination of drill samples from active faults and outcrops of exhumed analogues, from a range of depths, allows for a 4-D model from micro- to plate boundary scale.
By knowing the geometrical distribution of fault rocks, and deciphering their evolution in time, this project will apply geologically constrained numerical models and laboratory constrained stress-strain relationships to determine bulk fault rheology as a function of space. Unique from past models, this project integrates scales from microstructures to plate boundary scale faults, and bases rheological models on deformation mechanisms and fault structures constrained through detailed fieldwork, and also considers the state-of-the-art of geophysical observation. The model focuses on understanding slow earthquakes, but also applies to understanding whether the slow earthquake source can also host fast seismic slip, and what differentiates slowly slipping faults from faults hosting major earthquakes.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.