Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-116273GB-I00
BIOMECANICA DE LA MORFOGENESIS: DE LA SALUD A LA ENFERMEDAD
206K€
Cerrado
MORPHORCE
The input of mechanical forces to morphogenesis and wound he...
2M€
Cerrado
PID2019-109013GB-I00
MECANISMOS MOLECULARES Y CELULARES QUE REGULAN LAS FUERZAS Q...
242K€
Cerrado
WING MORPHOGENESIS
A physical basis for wing morphogenesis and planar cell pola...
2M€
Cerrado
PRE2021-099368
BUCLES MECANO-REGULADORES DE RETROALIMENTACION EN MORFOGENES...
101K€
Cerrado
EpiFold
Engineering epithelial shape and mechanics from synthetic m...
2M€
Cerrado
Información proyecto HydraMechanics
Duración del proyecto: 72 meses
Fecha Inicio: 2019-01-29
Fecha Fin: 2025-01-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of the morphogenesis process, across scales, to form viable organisms under variable conditions. We focus here on the less-studied mechanical aspects of this problem, and aim to uncover how mechanical forces and feedback contribute to the formation and stabilization of the body plan. Regenerating Hydra offer a powerful platform to explore this direction, thanks to their simple body plan, extraordinary regeneration capabilities, and the accessibility and flexibility of their tissues. We propose to follow the regeneration of excised tissue segments, which inherit an aligned supra-cellular cytoskeletal organization from the parent Hydra, as well as cell aggregates, which lack any prior organization. We will employ advanced microscopy techniques and develop elaborate image analysis tools to track cytoskeletal organization and collective cell migration and correlate them with global tissue morphology, from the onset of regeneration all the way to the formation of complete animals. Furthermore, to directly probe the influence of mechanics on Hydra morphogenesis, we propose to apply various mechanical perturbations, and intervene with the axis formation process using external forces and mechanical constraints. Overall, the proposed work seeks to develop an effective phenomenological description of morphogenesis during Hydra regeneration, at the level of cells and tissues, and reveal the mechanical basis of this process. More generally, our research will shed light on the role of mechanics in animal morphogenesis, and inspire new approaches for using external forces to direct tissue engineering and advance regenerative medicine.