Society generates increasing amounts of data, which is both a resource and a challenge. The data reveal new insights that may potentially improve our livelihood, but their quantity renders such insights difficult to find. Machine...
Society generates increasing amounts of data, which is both a resource and a challenge. The data reveal new insights that may potentially improve our livelihood, but their quantity renders such insights difficult to find. Machine learning techniques sift through the data looking for statistical patterns of interest to a given task. Due to an exponential growth in available data, these techniques enable us to automate difficult decisions, such as those needed for personalized medicine and self-driving cars.
NoTape note that machine learning techniques depend on a distance measure to determine which data points are similar and which are not. As this measure is difficult to choose, NoTape develop methods for estimating an optimal distance measure directly from data. Empirical evidence suggest that the optimal distance measure in one region of data space need not coincide with the optimal measure in another region, i.e.that the distance measure should locally adapt to the data. Local adaptability imply that the distance measure itself will be sensitive to noise in the data, and therefore should be described as a random variable. NoTape estimate distance measures as random Riemannian metrics and perform statistical data analysis accordingly. The notion of statistical computations with respect to an uncertain locally adaptive distance measure is uncharted territory, which need new algorithms for numerical integration and for solving differential equations.
As a guiding example, we estimate statistical models that reflect human perception. As perception processes are not fully understood, an optimal distance measure cannot be precisely estimated and the uncertainty of NoTape is needed.
The geometric nature of the developed methods ensure that attained models are interpretable by humans, which contrast current locally adaptive techniques. As society automate more decisions, interpretability is increasing important to ensure that the machine learning system can be trustedver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.