Mathematical study of Boundary Layers in Oceanic Motions
Boundary layer theory is a large component of fluid dynamics. It is ubiquitous in Oceanography, where boundary layer currents, such as the Gulf Stream, play an important role in the global circulation. Comprehending the underlying...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTM2010-16915
PROPAGACION DE OLEAJE DESDE AGUAS PROFUNDAS A SOMERAS, INTER...
15K€
Cerrado
MTM2014-56392-R
DINAMICA DE FLUIDOS GEOFISICOS: UNA PERSPECTIVA COMPUTACIONA...
31K€
Cerrado
FIBOSI
Flow Interaction Between the Ocean Surface and the Interior
165K€
Cerrado
FLAVE
Energetics of natural turbulent flows the impact of waves a...
1M€
Cerrado
RYC-2008-02319
Dinámica de mesoescala y submesoscala y reconstrucción del f...
59K€
Cerrado
VORTEXETER
Vortices and waves dynamics stability and mixing
201K€
Cerrado
Información proyecto BLOC
Duración del proyecto: 72 meses
Fecha Inicio: 2015-02-25
Fecha Fin: 2021-02-28
Líder del proyecto
SORBONNE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Boundary layer theory is a large component of fluid dynamics. It is ubiquitous in Oceanography, where boundary layer currents, such as the Gulf Stream, play an important role in the global circulation. Comprehending the underlying mechanisms in the formation of boundary layers is therefore crucial for applications. However, the treatment of boundary layers in ocean dynamics remains poorly understood at a theoretical level, due to the variety and complexity of the forces at stake.
The goal of this project is to develop several tools to bridge the gap between the mathematical state of the art and the physical reality of oceanic motion. There are four points on which we will mainly focus: degeneracy issues, including the treatment Stewartson boundary layers near the equator; rough boundaries (meaning boundaries with small amplitude and high frequency variations); the inclusion of the advection term in the construction of stationary boundary layers; and the linear and nonlinear stability of the boundary layers. We will address separately Ekman layers and western boundary layers, since they are ruled by equations whose mathematical behaviour is very different.
This project will allow us to have a better understanding of small scale phenomena in fluid mechanics, and in particular of the inviscid limit of incompressible fluids.
The team will be composed of the PI, two PhD students and three two-year postdocs over the whole period. We will also rely on the historical expertise of the host institution on fluid mechanics and asymptotic methods.