Mathematical Physics of Out of Equilibrium Systems
The purpose of the project is to develop new tools for a mathematical analysis of out of equilibrium systems. My main goal is a rigorous proof of Fourier's law for a Hamiltonian dynamical system. In addition I plan to study vari...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MTM2017-82348-C2-1-P
ESTUDIO CUALITATIVO DE OSCILADORES NO LINEALES Y PROBLEMAS D...
34K€
Cerrado
MTM2013-44123-P
SISTEMAS DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES. P...
9K€
Cerrado
INSTAB12
Existence of Instabilities in Hamiltonian Systems on lattice...
194K€
Cerrado
FIS2008-00200
DESARROLLOS SEMICLASICOS EN SISTEMAS INTEGRABLES. PROCESOS C...
48K€
Cerrado
HICODY
Mathematical Challenges of Higher Order Interactions in Coll...
181K€
Cerrado
FLIRT
Fluid Flows and Irregular Transport
1M€
Cerrado
Información proyecto MPOES
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The purpose of the project is to develop new tools for a mathematical analysis of out of equilibrium systems. My main goal is a rigorous proof of Fourier's law for a Hamiltonian dynamical system. In addition I plan to study various fundamental problems related to transport in such systems. I will consider extended dynamical systems consisting of a large number (possibly infinite) of subsystems that are coupled to each other. This set includes discrete and continuous wave equations, non-linear Schrödinger equation and coupled chaotic systems. I believe mathematical progress can be made in two cases: weakly nonlinear systems and strongly chaotic ones. In the former class I propose to study the kinetic limit and corrections to it, anomalous conductivity in low dimensional systems, interplay of disorder and nonlinearity and weak turbulence. In the latter class my goal is to prove Fourier's law. The methods will involve a map of the Hamiltonian problem to a probabilistic one dealing with random walk in a random environment and an application of rigorous renormalization group to study the latter. I believe the time is ripe for a breakthrough in a rigorous analysis of transport in systems with conservation laws. A proof of Fourier's law would be a major development in mathematical physics and would remove blocks from progress in other fundamental issues of non equilibrium dynamics. I have previously solved hard problems using the methods proposed in this proposal and feel myself to be in a good position to carry out its goals.