Massive reutilization of Electronic Health Records EHRs through AI to enhance...
Massive reutilization of Electronic Health Records EHRs through AI to enhance clinical research and precision medicine
In the last twenty years, the average return on R&D expenditure in the pharma industry has dropped from almost 18% to 3.7%. Moreover, annual funding for biomedical research has more than doubled while new drugs approvals have decl...
ver más
MEDSAVANA
El ejercicio o explotación de las actividades de investigación, desarrollo e innovación de tecnológica informática, así como su diseño, fabr...
TRL
4-5
| 2M€
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-113723RB-C22
METODOS DE GRAFOS DE CONOCIMIENTO PARA MODELOS DE MINERIA DE...
149K€
Cerrado
TIN2010-21388-C02-02
HERRAMIENTAS INTELIGENTES PARA ENLAZAR HISTORIAS CLINICAS EL...
27K€
Cerrado
kANNa
Knowledge graph completion using Artificial Neural Networks...
185K€
Cerrado
Información proyecto SAVANA
Duración del proyecto: 45 meses
Fecha Inicio: 2018-10-25
Fecha Fin: 2022-07-31
Líder del proyecto
MEDSAVANA
El ejercicio o explotación de las actividades de investigación, desarrollo e innovación de tecnológica informática, así como su diseño, fabr...
TRL
4-5
| 2M€
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In the last twenty years, the average return on R&D expenditure in the pharma industry has dropped from almost 18% to 3.7%. Moreover, annual funding for biomedical research has more than doubled while new drugs approvals have declined by one third. There is a wide consensus that the main cause of this problem is the exhaustion of a model intended to develop ‘broad indications’ and the need for a new ‘precision medicine’ model. We simply do not know enough about the underlying disease mechanisms involved, and more research is required to develop better disease classifications, which will enable a more targeted development approach for drugs and therapies.
Electronic Health Records (EHRs) has been used for more than ten years in most developed countries, and they gather now exhaustive clinical information of millions of patients. Leveraging EHRs could accelerate clinical research, and improve healthcare quality.
However, in order to uncover unknown disease models from EHRs, precision medicine requires massive research studies on thousands of patients (often in several countries). Currently there is no tool capable of: 1) automating the extraction of data from EHRs, and also, solving the privacy concerns raised by EHRs.
SAVANA RESEARCH uses Natural Language Processing to extract data from massive amounts of EHRs’ clinical narratives. It has the following advantages intended to make a leap in clinical research efficiency: 1) It uses only de-identified clinical records and ensures state of the art technologies to protect data privacy; 2) It is capable of decoding ten times more EHRs in half of the time; 3) It is capable of identifying 100 times more variables from EHRs; 4) And it costs 40% less.
The application of NLP to healthcare is a fast-growing market that is expected to reach 2.65 billion by 2021, by growing at a CAGR of 20.8%. SAVANA RESEARCH’s target markets are primary Europe and North America, which together comprises 75% of all clinical trials worldwide.