mARs Mobile DNA driven antibiotic resistance spreading molecular strategies c...
mARs Mobile DNA driven antibiotic resistance spreading molecular strategies control and evolution for broad distribution
Antibiotic resistance (AR) is spreading rapidly, leading to the development of highly virulent pathogens and multidrug-resistant ‘superbugs’, a major health concern of our era. Mobile DNA elements, transposons and integrons, effec...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PCI2021-122024-2A
NOVEL INTERVENTIONS FOR ELIMINATING ONE-HEALTH MOBILE ANTIMI...
44K€
Cerrado
PCI2021-122062-2A
NOVEL INTERVENTIONS FOR ELIMINATING ONE-HEALTH MOBILE ANTIMI...
215K€
Cerrado
HGTCODONUSE
The evolutionary significance of synonymous variations Can...
2M€
Cerrado
ROPHARE
Insights into the role of phages on the bacterial resistome
254K€
Cerrado
EUIN2017-86485
CHASIS DE CAPTURA DE CASETES DE INTEGRON (3CI), INTEGRONES C...
10K€
Cerrado
ICADIGE
The Integron Cassette Dynamics and the Integrase Gene Expres...
194K€
Cerrado
Información proyecto mARs
Duración del proyecto: 77 meses
Fecha Inicio: 2020-01-30
Fecha Fin: 2026-06-30
Líder del proyecto
UNIVERSITE DE GENEVE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Antibiotic resistance (AR) is spreading rapidly, leading to the development of highly virulent pathogens and multidrug-resistant ‘superbugs’, a major health concern of our era. Mobile DNA elements, transposons and integrons, effectively drive the spread of AR genes in microbial interaction hotspots, such as bacterial communities in humans and natural environments. Yet, our knowledge of their mechanisms remains very sparse. It is unclear how DNA movement occurs on the molecular level and how it is controlled in cells and communities; biochemical and structural data are rare and our view on their diversity and evolution is limited. Here I propose an integrated approach combining bioinformatics, genetics, microbiology, biochemistry, and structural biology to elucidate the mechanisms and diversity of mobile DNA driven resistance spreading. I want to (a) investigate the molecular mechanisms and regulation of AR gene movement in vitro, in model bacteria and in gut bacterial communities; (b) dissect the structure of the underlying molecular machineries to reveal how protein-DNA interplay promotes gene transfer; and (c) characterize the diversity, evolution and functional success of distinct molecular pathways. Mechanistic work will focus on selected mobile elements that confer resistance to last resort drugs and promiscuous gene carriers with high prevalence in health care. Bioinformatic quests will draw on recent (meta)genomic data to chart the clinical significance of molecular insights in situ. By bridging disciplines, I want to provide functionally annotated molecular movies of gene movement and explain how specific molecular strategies evolved to enable broad dissemination of resistance determinants. The insights gained in this research will provide in-depth knowledge on major AR transfer pathways and will have key implications for the development of novel intervention strategies and preventive measures aimed at reducing dissemination of drug resistance in bacteria.