MARKER BASED 3 D ADAPTIVE CARTESIAN GRID METHOD FOR MULTIPHASE FLOW AROUND IRRE...
MARKER BASED 3 D ADAPTIVE CARTESIAN GRID METHOD FOR MULTIPHASE FLOW AROUND IRREGULAR GEOMETRIES
Computational simulations of multiphase flow are challenging because many practical applications require adequate resolution of not only interfacial physics associated with moving boundaries with possible topological changes, but...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FastFlowSim
Fast particle based time integrator for incompressible flows...
195K€
Cerrado
ADDECCO
Adaptive Schemes for Deterministic and Stochastic Flow Probl...
1M€
Cerrado
STIMULUS
Space Time Methods for Multi Fluid Problems on Unstructured...
918K€
Cerrado
MTM2009-07719
MODELADO NUMERICO DE LA TURBULENCIA EN FLUJOS HIDRODINAMICOS...
134K€
Cerrado
FIS2009-08821
ESTRUCTURAS COHERENTES Y TURBULENCIA EN DOMINIOS SIMPLES
119K€
Cerrado
RYC-2015-18427
HIGH-FIDELITY FLOW SIMULATION ON COMPLEX GEOMETRIES
309K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Computational simulations of multiphase flow are challenging because many practical applications require adequate resolution of not only interfacial physics associated with moving boundaries with possible topological changes, but also around three-dimensional, irregular solid geometries. This project focuses on the simulations of fluid/fluid dynamics around complex geometries, based on an Eulerian-Lagrangian framework. The approach envisions using two independent but related grid layouts to track the interface and solid boundaries. In particular, the stationary Cartesian grid with automated local adaptive refinement capabilities is to handle the computation of the transport equations, while the interface shape and movement are treated by marker-based triangulated surface meshes which freely move and interact with the Cartesian grid. The markers are also used for identifying the location of the solid boundaries and enforcing the no-slip condition there. Issues related to the contact line treatment, topological changes of multiphase fronts during merger or breakup of objects, and necessary data structures and solution techniques will be investigated. Validation studies will be carried using (i) interface in a time-reversed vortex field (ii) effect of spurious currents (iii) Buoyancy driven rising bubble (iv) Drop impacting on a flat surface (v) Binary drop collision.