Mapping the behavioural causes of weight change variability with genetic lottery
Obesity is a heritable chronic condition, costing 2% GDP worldwide. Many obesity treatments - behavioural, pharmacological, and surgical have been developed. Intriguingly, people’s responses to treatments vary widely - some may lo...
Obesity is a heritable chronic condition, costing 2% GDP worldwide. Many obesity treatments - behavioural, pharmacological, and surgical have been developed. Intriguingly, people’s responses to treatments vary widely - some may lose a lot of weight whereas others may even gain weight! To predict such weight change variability, close to 200 measures have been proposed in the past. The measures can be organised into a PEBBL framework across five domains – Psychosocial, Environment, Behavioural, Biology, and Life quality. Still, there are too many measures to be used as predictors or intervention targets. To move the field forward, we propose a novel 3-step OBECAUSE pipeline consisting of consolidation, genomic causation, and validation. 1) In consolidation, we will use machine learning to find best-predicting PEBBL measures in several large-scale weight loss datasets. The PEBBL measures will be integrated into a new PEBBL short questionnaire with wide coverage and good psychometric properties. The questionnaire will be then distributed to all participants of Estonian Biobank to study the genomics of PEBBL. 2) For genomic causation, we will detect genetic variants behind PEBBL measures and weight change. Knowing these variants enables discovering additions to the PEBBL framework through genetic correlations and functional mapping. Importantly, as genetic variants are randomised through genetic lottery, they enable systematic causal mapping of PEBBL measures that have causal effects on weight change. 3) For validation, these causal measures will be used as inputs to design an OBECAUSE toolbox of weight loss interventions. The value of these interventions will be tested in a commercial weight loss app. In summary, the OBECAUSE pipeline of narrowing scattered associations down to potential causal mechanisms with machine learning and genomic causal inference will set a new standard for the behavioural health sciences allowing for quicker discovery of intervention targets.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.