Mapping metabolic responses to understand coexistence and community functioning
The metabolism of organisms affects the productivity of populations and communities. However, the relationship between organismal metabolism and species interactions has been scarcely explored. Hence, predicting the rates at which...
The metabolism of organisms affects the productivity of populations and communities. However, the relationship between organismal metabolism and species interactions has been scarcely explored. Hence, predicting the rates at which entire communities flux energy and resources remains difficult. My work shows that the metabolism of organisms measured in isolation does not reflect their performance in communities because species interactions alter how organisms uptake and expend resources. Understanding how such interactions affect metabolism is essential to estimate productivity and how it will change with biodiversity loss and global warming. I propose to use marine phytoplankton as a model laboratory system to determine how metabolic responses to competitors affect coexistence and community functioning. My goal is to connect metabolic theory, that studies physical constraints on the metabolism of organisms in isolation, with community ecology, that centres on species interactions and emergent community properties. Based on my preliminary data, I will map metabolic responses between species that compete for similar resources and test whether these responses stabilise coexistence. I will leverage developments in transcriptomics of non-model organisms to identify the metabolic pathways that underpin metabolic responses. From this basis, I will extend my analysis on larger temporal and biological scales – I will determine how warming modifies metabolic responses and community productivity and, finally, how metabolism evolves in communities. Altogether, this project will demonstrate how metabolic adjustments influence the diversity and functioning of communities. I will use a system that is ecologically important because phytoplankton support 50% of global oxygen production. These results will have broad implications for our understanding of biological systems because the metabolic impact of species interactions shapes the physiology and evolution of all organisms.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.