Mapping Cancer Response using Organoids and Mass cytometry
Breast cancer is the most common form of cancer in women and has a very variable prognosis. Efficacy of anticancer therapies is limited by intertumor and intratumor heterogeneity. To take these into account, tumor models should re...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FPSA13-1E-2048
Integrando la Medicina de Precisión a Nivel de la Célula Ind...
1K€
Cerrado
HERCULES
Comprehensive characterization and effective combinatorial t...
6M€
Cerrado
SpatialOrganoids
Profiling the emergence of phenotypic heterogeneity in breas...
191K€
Cerrado
EQC2021-006895-P
Espectrómetro de masas para la medida multiparamétrica simu...
525K€
Cerrado
3DPD
PhD position in commercial environment cancer immunotherapy...
135K€
Cerrado
OncoSeq
OncoSeq an innovative single cell system for immunomonitori...
150K€
Cerrado
Información proyecto MaCaROM
Duración del proyecto: 24 meses
Fecha Inicio: 2021-03-25
Fecha Fin: 2023-03-31
Líder del proyecto
UNIVERSITAT ZURICH
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
191K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Breast cancer is the most common form of cancer in women and has a very variable prognosis. Efficacy of anticancer therapies is limited by intertumor and intratumor heterogeneity. To take these into account, tumor models should recapitulate native tumor heterogeneity and should be analysed at the single-cell level. Here, we propose to take advantage of the conserved heterogeneity of breast cancer patient-derived organoids in order to analyze their response to 45 FDA-approved drugs. These responses will be mapped in a single-cell atlas of sensitivities using mass cytometry, and the use of this atlas will be assessed for the prediction of drug sensitivity in future patient tumors and to guide treatment. We plan on exploring the best hits of this screening using imaging mass cytometry to have a spatial view of the evolution of the tumor ecosystem over time after drug treatment. This should positively impact patient treatment and survival and, more broadly, could lead to the new concept of mapping-based precision medicine. This project will also uncover the biology of resistance to drug treatments at unprecedented resolution. The study of the different cellular populations composing breast tumors, and their interactions, will lead to a better understanding of the tumor ecosystem and to the identification of therapies targeting specific cellular populations that could trigger tumor demise.