Many-body localization in two-dimensional quasiperiodic systems
Systems that fail to thermalize over a long period of time are essential for both practical applications and fundamental science. For the former, such systems can serve as stable platforms for many future technologies that operate...
Systems that fail to thermalize over a long period of time are essential for both practical applications and fundamental science. For the former, such systems can serve as stable platforms for many future technologies that operate at the quantum level, such as information storage and quantum computing devices. For the latter, such systems can host exotic quantum phases of matter by suppressing thermal excitations that tend to destroy the order. One of the most famous classes of systems that resist thermalization is the class of many-body localized (MBL) systems. Until now, it has been confirmed both experimentally and theoretically that the MBL can exist in isolated one-dimensional systems, either random or quasiperiodic ones. In higher dimensions, the fate of MBL is still unclear. A famous avalanche theory predicts the instability of the MBL phase in higher dimensional random systems due to the rare regions of weak disorder. However, quasiperiodic systems do not contain rare regions, which might stabilize the higher-dimensional MBL. The main objective of this proposal is to investigate MBL in two-dimensional quasiperiodic systems. The goal is to show whether MBL in quasiperiodic systems can survive in dimensions higher than one. With a novel numerical approach, which will allow me to study the dynamics of large systems (~100 sites) and reach long times (several hundred hopping times), combined with analytical calculations, I plan to investigate the microscopic mechanisms behind the stability/instability of the MBL phase in two-dimensional quasiperiodic models. My research will (i) provide an insight into the interplay between interactions and quasiperiodicity in two dimensions, (ii) produce a new interesting range of localization phenomena, and (iii) present a highly tunable and experimentally accessible setting where slow dynamics and localization can be studied, and possibly exploited for technological applications.ver más
11-11-2024:
Asturias Hiperautoma...
Se ha cerrado la línea de ayuda pública: Proyectos de I+D+i que implementen soluciones en hiperautomatización en empresas para el organismo:
11-11-2024:
Cooperación I+D+i La...
Se ha cerrado la línea de ayuda pública: Proyectos colaborativos de desarrollo experimental e innovación que resuelvan retos en La Rioja para el organismo:
10-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 65 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.