Many body physics and superconductivity in 2D materials
The goal of this project is to prepare and functionalize layered materials and then to characterize them in-situ using a novel combination of electrical transport, photoelectron and optical spectroscopy. This approach provides a s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RYC-2010-06737
Fenómenos Intefaciales en Heterostructuras Superconductoras
192K€
Cerrado
FIS2015-64886-C5-2-P
SIESTA Y LA TEORIA DE INESTABILIDADES Y TRANSPORTE EN MATERI...
59K€
Cerrado
UNICOSMOS
Unravelling the intertwined correlated states of matter in m...
173K€
Cerrado
PID2020-120614GB-I00
PROPIEDADES ESPECTRALES Y DE TRANSPORTE DE MATERIALES CUANTI...
105K€
Cerrado
EIN2020-112223
MATERIALES TOPOLOGICOS 2D PARA VALLEYTRONIC
10K€
Cerrado
3-TOP
Exploring the physics of 3 dimensional topological insulator...
2M€
Cerrado
Información proyecto SUPER-2D
Duración del proyecto: 79 meses
Fecha Inicio: 2015-05-20
Fecha Fin: 2021-12-31
Líder del proyecto
UNIVERSITAT ZU KOLN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The goal of this project is to prepare and functionalize layered materials and then to characterize them in-situ using a novel combination of electrical transport, photoelectron and optical spectroscopy. This approach provides a solution to the intense research efforts in trying to engineer, probe and unravel many-body physics and the superconducting coupling mechanism in layered solids. The materials under investigation are based on the families of graphene, dichalcogenides and iron based superconductors. Chemical functionalization using dopants and strain allows for an unprecedented control over their physical properties. The proposed material systems provide a new arena to explore diverse condensed matter phenomena such as electron correlation, electron-phonon coupling and superconductivity. The groundbreaking aspects of this proposal are as follows: (1) development of a unique setup where electrical transport, angle-resolved photoemission (ARPES) and optical spectroscopy is measured in-situ on the same sample, (2) large-area deterministic layer-by-layer growth by chemical vapour deposition (CVD) and molecular beam epitaxy, (3) the effects of mechanical strain and hence large pseudomagnetic fields on the electronic band structure will be investigated using ARPES, (4) the effects of alkali metal doping on the superconducting transition temperature and the spectral function will be investigated using transport, ARPES and optical spectroscopies shining light onto the superconducting pairing mechanisms in different classes of materials. The proposal's feasibility is firmly grounded on the pioneering work of the PI’s group on superconducting coupling in functionalized graphene and the in-situ ARPES measurements of a CVD grown graphene/BN heterostructure.