Managing Uncertainty in Disaster Risk Reduction ─ An Ethnography of Data Practic...
Managing Uncertainty in Disaster Risk Reduction ─ An Ethnography of Data Practices in Ghana’s Emergency Preparedness and Early Intervention Infrastructure
The MUNDI MSCA project explores the uses of digital innovations for the predictive anticipation, real-time analysis, and early intervention in multiple and intersecting threats to human security in Ghana. Specifically, the project...
The MUNDI MSCA project explores the uses of digital innovations for the predictive anticipation, real-time analysis, and early intervention in multiple and intersecting threats to human security in Ghana. Specifically, the project takes the focal areas of Ghana’s multi-sectoral emergency preparedness and response effort – that is, the spread of infectious disease, climate-change related flooding, and man-made disasters in the context of mining activities – as case studies to explore data practices in the country’s national disaster risk reduction (DRR) strategy. Central tools of DRR, including strategic and evidence-based risk assessment, operational plans and risk communication, are directly tied to the systematic and standardized production and analysis of data about populations and their environs. This has raised concerns about data quality in contexts characterized by historically incomplete and fragmented population registers and statistical reporting systems. The MUNDI project seeks to answer the research question how innovations in data practices anchor the acceleration of interventions in human security in spite of multiple and layered uncertainties about data sources, models and predictions. Exploring this question in the context of Ghana will advance our empirical understanding of the base processes and material foundations of building real-time datafication in emerging data systems, develop new theoretical approaches to evidence-production under conditions of sustained uncertainty, and add to our methodological toolkit new frames for the comparative analysis of digital population data infrastructuring for the purpose of impact forecasting, early warning, and rapid deployment of first responders.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.