The aim of the proposed research project is to establish a new environment for the generation, study and manipulation of Majorana fermions, namely two dimensional electron gases embedded in III-V semiconductors with strong spin-or...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TopoGraph
Towards topological hybrid states in graphene
146K€
Cerrado
FIS2015-63058-CIN
MAJORANA STATES IN CONDENSED MATTER: TOWARDS TOPOLOGICAL QUA...
12K€
Cerrado
EUR2020-112116
INVESTIGACION ATOMICA PARA SUPERCONDUCTORES TOPOLOGICOS
60K€
Cerrado
TOPOQDot
A bottom up topological superconductor based on quantum dot...
2M€
Cerrado
Topo2DEG
Topological states in superconducting two dimensional electr...
2M€
Cerrado
CNTQC
Curved nanomembranes for Topological Quantum Computation
2M€
Cerrado
Información proyecto MaNET
Duración del proyecto: 25 meses
Fecha Inicio: 2015-02-25
Fecha Fin: 2017-03-31
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
200K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of the proposed research project is to establish a new environment for the generation, study and manipulation of Majorana fermions, namely two dimensional electron gases embedded in III-V semiconductors with strong spin-orbit interaction. With respect to the nowadays approach, based on nanowires, two-dimensional materials will allow completely new sample design, paving the way for precise control and complex manipulation of Majorana modes. The ultimate goal will be the realization of multi-terminal networks, where the braiding statistics of Majorana fermions will be investigated. The success of the proposed project will constitute a key advancement for the use of Majorana fermions as tools for quantum computing applications. We will make use of recently developed tools and materials to solve the nowadays technical difficulties in taking experiments on Majorana fermions to a new level.
For our research, we will adopt InAs\InGaAs quantum wells, characterized by strong spin-orbit interaction and large Landé g-factor, coupled to superconducting electrodes. As shown by preliminary results, the quality of our InAs samples is unique in terms of mobility and gate stability. The researcher’s expertise in quantum transport is a good match to the wide experience of the host institution in terms of quantum computation and semiconductor/superconductor hybrid devices. The availability of the state of the art cryogenic equipment, including vector magnets, will allow to experimentally explore completely new regimes in condensed matter physics.