MAGnetic In-silico CAncer Treatment (MAGICAT): Advanced models of magnetic hyper...
MAGnetic In-silico CAncer Treatment (MAGICAT): Advanced models of magnetic hyperthermia
Magnetic nanoparticles show promising perspectives for an increasing number of biomedical applications, in particular magnetic hyperthermia, which is proposed as a non-invasive method for cancer therapy. The advances are limited b...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RYC2020-029822-I
A Physics-Based Model for the Heating Performance of Magneti...
324K€
Cerrado
PID2019-109514RJ-I00
A PHYSICS-BASED MODEL FOR THE HEATING PERFORMANCE OF MAGNETI...
145K€
Cerrado
MAT2013-47395-C4-4-R
NANOESTRUCTURAS MULTIFUNCIONALES PARA IMAGEN Y TERMOTERAPIA...
99K€
Cerrado
MAT2014-54975-R
DESARROLLO DE TERAPIAS DEL CANCER MEDIANTE HIPERTERMIA INTRA...
145K€
Cerrado
CNS2023-145169
Materiales con funcionalidad eléctrica, magnética, óptica o...
198K€
Cerrado
PDC2022-133028-I00
NUEVA GENERACION DE HIPERTERMIA MAGNETICA PARA TERAPIAS CONT...
138K€
Cerrado
Información proyecto MAGICAT
Duración del proyecto: 37 meses
Fecha Inicio: 2022-06-16
Fecha Fin: 2025-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Magnetic nanoparticles show promising perspectives for an increasing number of biomedical applications, in particular magnetic hyperthermia, which is proposed as a non-invasive method for cancer therapy. The advances are limited by the complex behaviour of nanoparticles inside biological environments and the lack of sophisticated theoretical tools to tackle the problem.
The project goal is to develop an advanced theoretical and computational model to investigate the basis of magnetic hyperthermia and provide tools for personalised therapy optimisation. The model will use state of the art techniques in theoretical magnetism and thermodynamics to describe, in a self-consistent way, the heat generation and transport inside and around the tumour. The new theoretical framework will
allow quantifying the heat generated by each individual particle at nanosecond resolution.
This will include the case of large particle assembles, where inter-particle interaction play a crucial role. The short time scale (nanoseconds) required by the fundamental aspect of the problem will be coupled with the large time scale (minutes/hours) required for the treatments by using a multiscale approach. To mimic the physical conditions of magnetic nanopaticles inside real tumour tissues, particles/tumour spatial configuration and properties will be based on experimental data.
The model will be validated through an extensive collaboration with leading experimental groups.
The final goal is to develop a publicly available documented software which can be used by the research community for basic theoretical studies, understanding of experiments, and as a tool for hyperthermia optimisation.