Magnetic counterparts of unconventional superconductors for spin conserved and n...
Magnetic counterparts of unconventional superconductors for spin conserved and non dissipative electronics
Our recent discovery of altermagnets has opened science and technology opportunities unparalleled in the two conventional classes of ferromagnets and antiferromagnets. Moreover, the direct analogy of a d-wave spin-polarization ord...
ver más
31/12/2029
Líder desconocido
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-10-21
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto Super4Spin
Duración del proyecto: 62 meses
Fecha Inicio: 2024-10-21
Fecha Fin: 2029-12-31
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Our recent discovery of altermagnets has opened science and technology opportunities unparalleled in the two conventional classes of ferromagnets and antiferromagnets. Moreover, the direct analogy of a d-wave spin-polarization order in altermagnets to the unconventional d-wave superconducting order in cuprates suggests that we now hold a key to a vast uncharted territory of unconventional magnetism. In my project, I will identify unconventional forms of magnetism beyond the d-wave cuprate counterparts, including such prominent examples as magnetic counterparts of s$^\pm$-wave pnictide superconductors or p-wave superfluid He-3. To build a periodic table of unconventional even and odd-parity wave magnets, I will develop a generalized symmetry-based methodology, tailored to a variable hierarchy of interactions across this large materials' territory. With the periodic table of unconventional magnetism, I will remove fundamental roadblocks in research and applications of relativistic and topological phases based on conventional magnets: the non-conserved spin of relativistic electrons, and the fragility of topological phases with non-dissipative electronic transport. I will demonstrate: (i) Even-parity-wave magnetism with time-reversal-symmetry breaking in the electronic structure accompanied by a vanishing net magnetization, and with conserved spin of relativistic electrons. (ii) Odd-parity-wave magnetism with time-reversal-invariant electronic structure, and with a strong exchange spin-splitting counterpart of the conventional weak relativistic spin splitting. (iii) Robust synergy of unconventional magnetism with topological phases in one common crystal. Armed with (i-iii), I will show the path to spin-conserved and non-dissipative electronic transport at ambient conditions using the unconventional magnets. This can pave the way for future ultra temporally and spatially scalable and energy-efficient spin-based electronics.