Machine learning-aided multiscale design of porous materials tailored to applica...
Machine learning-aided multiscale design of porous materials tailored to application-specific, hydro-mechanical performance requirements
Through continuous interaction between computational fluid dynamics, mechanics of solids, material engineering, and machine learning, with my host, I will develop a novel and computationally efficient method, implemented in open-s...
Through continuous interaction between computational fluid dynamics, mechanics of solids, material engineering, and machine learning, with my host, I will develop a novel and computationally efficient method, implemented in open-source software, for the multi-scale design of engineered porous materials (EPMs) that meet user-specified hydro-mechanical functional requirements. This computer-aided approach will accelerate the discovery of EPMs and shorten the time for technology development, and is aimed at EPM design for additive Manufacturing (i.e. 3D-printing). The basic notion of the proposed approach is: (1) to employ a dimensionality reduction techniques to obtain a low-dimensional proxy for the high-dimensional problem of characterizing a porous micro-structure, (2) to develop physics-informed neural networks (PINNs) for scale-specific hydro-mechanical simulation of porous media at the micro (pore) scale, the meso (pore-network) scale, and the macro (Darcy) scale, (3) to employ a physics-based coupling mechanism for scale-specific PINNs, allowing them to form a chain of neural networks for hydro-mechanical structure-property-performance (S-P-P) linkage, and (4) to incorporate a topology optimization algorithm for the multi-scale design of porous media. The focus is on fluid-saturated, poroelastic materials, with special emphasis on biomedical applications that require a defined porous structure, such as meniscus implants and bone scaffolds. I will work on the project at the University of Luxembourg (host institute), in collaboration with the University of Strasbourg (secondment institute).ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.