Machine learning methods for excited-state dynamics simulations in light-induced...
Machine learning methods for excited-state dynamics simulations in light-induced spin-crossover complexes
Spin crossover complexes are bistable transition-metal compounds in which light, or other external simuli, is used to induce a change in the magnetic state of the system, allowing them to be employed as molecular switches in futur...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SCOML
Duración del proyecto: 28 meses
Fecha Inicio: 2023-05-02
Fecha Fin: 2025-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Spin crossover complexes are bistable transition-metal compounds in which light, or other external simuli, is used to induce a change in the magnetic state of the system, allowing them to be employed as molecular switches in future spintronics and photonics technologies. Despite the rapid development of experimental techniques to characterise these complexes, computational material science is not yet able to provide a quantitative description of the light-induced spin crossover mechanism. These limitations are mainly due to the need for enormous computational resources to perform accurate excited-state dynamics simulations in medium-sized transition-metal complexes. The aim of the SCOML project is to provide the proof of concept for a new machine learning-based strategy that will enable efficient and accurate simulations of the light-induced spin-crossover mechanism, thus paving the way for a systematic design of new materials. Achieving this goal has the potential to revolutionise the production of new technological solutions to guide Europe towards a digital and green transition.