Machine learning algorithm pipeline for endothelial damage detection and adverse...
Machine learning algorithm pipeline for endothelial damage detection and adverse outcome prediction.
Endothelial cells form the lining of the blood vessels of the entire vascular system, from the heart to the smallest capillary, regulating vascular tone, immune response and exchange of materials in and out the blood stream among...
Endothelial cells form the lining of the blood vessels of the entire vascular system, from the heart to the smallest capillary, regulating vascular tone, immune response and exchange of materials in and out the blood stream among others. Endothelial damage has been observed in the early stages of most cardiovascular diseases, atherosclerosis or in patients with iflammatory and infectious diseases (e.g. COVID-19, septic shock). Typically endothelial damage is measured by means of blood test analysis and provocative tests either invasive, performed by using pharmacological agents, or non-invasive, such as flow mediated dilation that on the other hand, suffer from high operator-independency and no-automatization. This proposal revolves around the design, development and validation of a supervised machine learning algorithm (ML) to evaluate endothelial damage and predict adverse outcome in critically ill patients in the ICU. The ML pipeline will use as input data the one from the Horizon 2020 project VASCOVID clinical validation. These data comprises of physiologically relevant variables that can be measured non-invasively with a completely automatized platform. This smart platform combines diffuse optics and an automatized tourniquet for performing a reactive test on peripheral muscle (thenar muscle). By means of this device it is possible to access in an accurate and robust way information about early impairment in perfusion, metabolic rate of oxygen consumption, and microvascular functionality and tissue capability of locally regulate the blood flow. These variables bring an important physiological insight concerning the interpretability of machine learning algorithm from the clinical community who does not fully trust this approaches.ver más
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.