Lubricant-infused surfaces in sUrfactant- and Bacteria-laden turbulent FLOWs
Robust surfaces that can resist fouling, reduce flow drag and control heat- and mass transfer in fluctuating flows would have broad technological implications, ranging from biomedical devices and marine industry to food processing...
Robust surfaces that can resist fouling, reduce flow drag and control heat- and mass transfer in fluctuating flows would have broad technological implications, ranging from biomedical devices and marine industry to food processing and batteries. Slippery surfaces that use microstructures to lock in place a lubricating liquid hold great promise as a breakthrough technology. In gentle conditions, they have already demonstrated anti-fouling, drag reduction and heat-transfer enhancement. However, when submerged in harsh flow environments that contain turbulence, surfactants and microorganisms, these surfaces drastically change their behavior. The lubricant-liquid interface can break up and partially drain resulting in self-emergent surface patterns. It can sustain large capillary waves resulting in surface roughness. It can change or obtain new properties from Marangoni stresses and it can allow the partial attachment of biofilms. Understanding these non-equilibrium states of lubricant-infused surfaces will lead to mitigation of failure modes and to new functionalities of lubricant-infused surfaces, including controlling non-colloidal particles or serving as surface actuators. Therefore, the aim of this project is to provide a deep understanding of lubricant-liquid phenomena in harsh flow environments and lead the way to a new generation of functional surfaces for fluid flows. We will use a unique combination of high-performance computing and flow experiments to untangle the interaction between the tiny scales of liquid-liquid interfaces, large flow patterns, the existence of hidden surfactants and the active decisions made by settling bacteria. By establishing the fundamental behavior of lubricant-infused surfaces in dynamic and realistic environments, we pave the way to control transport processes in submerged applications.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.