Low Energy Dew Point Cooling for Computing Data Centres
Cooling systems for Computing & Data Centres consume 30% to 40% of energy delivered into the centre spaces, while electricity use in CDCs represents 1.3% of the world total energy consumption. The traditional vapour compression co...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
LEAP
Loop heat pipe for waste heat recovery in data centres
185K€
Cerrado
E2District
Energy Efficient Optimised District Heating and Cooling
2M€
Cerrado
Información proyecto DEW-COOL-4-CDC
Duración del proyecto: 70 meses
Fecha Inicio: 2016-12-02
Fecha Fin: 2022-10-31
Líder del proyecto
UNIVERSITY OF HULL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Cooling systems for Computing & Data Centres consume 30% to 40% of energy delivered into the centre spaces, while electricity use in CDCs represents 1.3% of the world total energy consumption. The traditional vapour compression cooling systems for CDCs are neither energy efficient nor environmentally friendly. Several alternative cooling systems, e.g., adsorption/absorption, ejector, and evaporative types, have certain level of energy saving potential but exhibit some inherent problems that have restricted their wide applications in CDCs. This RISE programme aims to form an international and inter-sectoral network of organisations working on a joint research and innovation programme dedicated to develop the design theory, computerised tool and technology prototypes for a novel CDC dew point cooling system. Such a system, comprising a few critical and highly innovative components (i.e., dew point air cooler, adsorbent sorption/regeneration cycle, micro-channels-loop-heat-pipe (MCLHP) based CDC heat recovery system, paraffin/expanded-graphite based heat storage/exchanger, and internet-based intelligent monitoring and control system), is expected to achieve 60% to 90% of electrical energy saving and have a comparable initial price to traditional CDC air conditioning systems, thus removing the above outstanding problems remaining with existing CDC cooling systems. Within the programme, the participants will exchange skills and knowledge that will allow them to progress towards the key target set for the CDC dew point cooling system, and strengthen collaborative research among different countries and sectors. The advances in the novel CDC dew point cooling system will have potential market opportunities for non-academic participants in the programme, and have significant benefits to European society and economy. The staff members who participate in the programme will develop new skills, be exposed to new research environments and have their career perspectives widened.