Low Cost GNSS and Computer Vision Fusion for Accurate Lane Level Navigation and...
Low Cost GNSS and Computer Vision Fusion for Accurate Lane Level Navigation and Enhanced Automatic Map Generation
Lane-level positioning and map matching are some of the biggest challenges for navigation systems. Although vehicle telematics provide services with positioning requirements fulfilled by low-cost GNSS receivers, more complex road...
Lane-level positioning and map matching are some of the biggest challenges for navigation systems. Although vehicle telematics provide services with positioning requirements fulfilled by low-cost GNSS receivers, more complex road and driver assistance applications are increasingly been deployed, due to the growing demand. These include lane-level information as well as lane-level navigation and prioritised alerts depending on the scenario composition (traffic sign, navigation instructions, ADAS instructions). These applications need a more accurate and reliable positioning subsystem. A good example of these new requirements can be witnessed in the increasing interest in navigation at lane-level, with applications such as enhanced driver awareness, intelligent speed alert and simple lane allocation. As well as the accuracy of positioning data being a big driver, there is also a question around the adaptability of navigation systems to these applications. This depends firstly on the availability of an accurate common reference for positioning (an enhanced map) and secondly, on the level of the provided pose estimation (integrity). However, neither the current road maps nor the traditional integrity parameters seem to be well suited for these purposes. Delivering lane-level information to an in-vehicle navigation system and combining this with the opportunity for vehicles to exchange information between themselves, will give drivers the opportunity to select the optimal road lane, even in dense traffic in urban and extra-urban areas. Every driver will be able to choose the appropriate lane and will to be able to reduce the risks associate with last-moment lane-change manoeuvres. inLane proposes new generation, low-cost, lane-level, precise turn-by-turn navigation applications through the fusion of EGNSS and Computer Vision technology. This will enable a new generation of enhanced mapping information based on crowdsourcing.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.