Long Range Surface Plasmon Polaritons as an Alternative Information Carrier for...
Long Range Surface Plasmon Polaritons as an Alternative Information Carrier for Nanoscale Quantum Circuitry
The aim of this innovative and high-impact interdisciplinary proposal is to investigate the potential properties and applications
of plasmonic metallic nanostructures that enable the confinement of light to scales beyond the diffr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PLASMENTA
Nanoscale detection of entangled surface plasmon polaritons
110K€
Cerrado
SPEEDBUMPS
Single Photon Emission Enhancement by Deterministic Bottom U...
196K€
Cerrado
PLAQNAP
Plasmon based Functional and Quantum Nanophotonics
2M€
Cerrado
QUOMATERS
Plasmonics of Quantum Materials from surface plasmon conden...
266K€
Cerrado
NanoChain
Collective effect with ordered nanofiber-trapped atomic arra...
212K€
Cerrado
FIS2017-87363-P
NANOFOTONICA CUANTICA: EXPLORANDO LAS CORRELACIONES CUANTICA...
115K€
Cerrado
Información proyecto QuP
Duración del proyecto: 33 meses
Fecha Inicio: 2016-03-21
Fecha Fin: 2018-12-29
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of this innovative and high-impact interdisciplinary proposal is to investigate the potential properties and applications
of plasmonic metallic nanostructures that enable the confinement of light to scales beyond the diffraction limit, known as
quantum plasmonics. Latest studies have revealed the quantization of surface plasmon polaritons (SPPs). It could be the
stepping stone for the generation of miniaturized photonic components for the quantum control of light. This implies that the
SPPs would represent a totally new sort of information carrier for nanoscale circuitry, enabling a revolutionary bridge
between current diffraction-limited microphotonics and bandwith-limited nanoelectronics, paving the way for integrated
quantum information processing. Thus, in a first stage we will develop integrated nanoscale quantum plasmonics building
blocks on-a-chip, such as efficient single-photon sources or transistors, which is the component required for the fabrication
of true nanoscale quantum computing logic gates. We also plan to exploit the low-Ohmic-losses and prospects for large
scale production of ultra-compact cutting-edge graphene plasmonic circuits. This research will be lastly applied to single
molecule sensing. Experiments will be performed using innovative techniques for nanofabrication of photonic nanostructures
and for characterization. The expected results will allow taking advantage of quantum interference effects, setting up the
optical response of the extremely low losses Long Range (LR) SPPs modes within a quantum framework and showing that
graphene layers produce strong light-matter interaction and extreme optical field confinement. The results will be compared
with ab initio simulations, giving a precise and consistent experimental and theoretical panorama of quantum plasmonics.