Formal language theory is indisputably one of the most successful theories in theoretical computer science with many applications in such fields as formal verification, programming languages, and databases, to name a few. Despite...
Formal language theory is indisputably one of the most successful theories in theoretical computer science with many applications in such fields as formal verification, programming languages, and databases, to name a few. Despite this, the standard restriction to finite alphabets has been a limiting factor in the applicability of the theory in various important application domains, wherein sequences with data (i.e. ranging over an infinite domain like the set of integers and the set of strings) naturally arise. This has motivated an extensive study of automata over infinite alphabets in the last three decades, which aims to develop algorithms for analyzing data languages. It was, however, quickly realized that permitting anything but the simplest data reasoning results in undecidability for the most fundamental models in the theory. Given the growing practical needs for tools for reasoning about sequences with data, it is crucial that we break through this undecidability barrier.
The aim of the project is to overcome the current undecidability barrier in extending automata theory over infinite alphabets with complex data reasoning. The first concrete objective is, thus, to identify new decidable logic/automata models for data languages that permit complex data reasoning over various data domains (e.g. integer linear arithmetic, real-closed fields, string constraints, etc.), and to develop efficient algorithms for analyzing them. In addition to making fundamental theoretical contributions in automata theory
over infinite alphabets, I also aim to address the current practical needs for tools for reasoning about sequences.
Thus, the second objective of the project is to transfer new algorithmic insights to the following important application
domains:
(1) querying graph databases, (2) verification of list-manipulating programs, and (3) interpretable machine learning for sequences.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.