Local Optoelectronic Visualisation for Enhancing Tandem Perovskite Silicon Solar...
Local Optoelectronic Visualisation for Enhancing Tandem Perovskite Silicon Solar Cells
To ensure that Europe reaches its 2030 Climate & Energy targets, including 27% renewable energy capacity on the grid, society must accelerate the deployment of photovoltaics (PV). Thus, developing new solar energy harvesting solut...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto LOVETandemSolar
Duración del proyecto: 37 meses
Fecha Inicio: 2019-04-11
Fecha Fin: 2022-05-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
To ensure that Europe reaches its 2030 Climate & Energy targets, including 27% renewable energy capacity on the grid, society must accelerate the deployment of photovoltaics (PV). Thus, developing new solar energy harvesting solutions with enhanced performance is essential. Silicon (Si) devices currently dominate 90% of the PV market share and have a standard operational efficiency (η) of 20-25%. To boost this performance, researchers are fabricating multijunction solar cells, i.e. introducing a tuneable-bandgap perovskite PV material on top of the Si. By creating this dual junction device, the practical η jumps to 30-35%, dramatically reducing the cost/Watt of the existing commercialized technologies. Yet, little is known about how the electrical and optical properties of the perovskite and Si layers influence one another or whether the present microscale pyramidal patterning of Si needs to be re-optimised for multijunction architectures.
The main objective in this project is to probe the optoelectronic interactions of next-generation PV devices to capture the intricate optical interplay between the perovskite and Si. By leveraging the Researcher’s expertise in implementing/conducting functional microscopy experiments, the Host will learn cutting-edge techniques based on scanning probe and optical microscopes. Meanwhile, working with Dr. Sam Stranks at the University of Cambridge offers an unparalleled opportunity for the Researcher to acquire knowledge about novel optical spectroscopy imaging methods as well as perovskite device synthesis. Researching at Cambridge will also encourage international collaborations with world-renowned scientists. The transfer of knowledge between the Researcher and Host will lead to optimised perovskite/Si tandem solar cells with η exceeding the current state-of-the-art PV devices. Such results will undoubtedly promote further solar energy adoption, helping Europe uphold a competitive, secure, and sustainable electrical grid.