Linking chemistry and physics in the planet forming zones of disks
The heavy elements (C, O, N) in exoplanetary atmospheres result from accretion of gas and impacts of icy pebbles and planetesimals in disks around young stars. The gas and dust, in turn, originate from the collapsing cloud that fo...
The heavy elements (C, O, N) in exoplanetary atmospheres result from accretion of gas and impacts of icy pebbles and planetesimals in disks around young stars. The gas and dust, in turn, originate from the collapsing cloud that formed the star plus disk, with icy grains growing, settling and drifting in radially to the planet-forming zones. The inner disk (0.1-10 au) is a key region in planet formation, yet its physical and chemical structure is still poorly constrained observationally. The next years offer huge observational improvements at infrared wavelengths, which is the primary regime to study inner disks. Most notably, JWST offers unique diagnostics of gas and ice at unprecedented sensitivity and sharpness. The applicant has been heavily involved in planning and building of JWST-MIRI for the past 25 years, and co-leads GTO programs on protostars and protoplanetary disks.
This proposal requests funding for 2 postdocs and 3 PhD students to carry out an interdisciplinary program that analyses MIRI data as soon as they arrive by mid-2022, and makes crucial connections with ALMA and VLT(I) data, state-of-the-art disk models developed by the applicant’s team, and laboratory experiments on ices. The specific goals are to (i) determine the chemical inventory of gas in inner disks, and measure C/O/N/H ratios in exoplanet birth environments; (ii) relate differences in chemical composition between disks to locations of dust traps, icy pebble sublimation at snowlines, and presence of cavities; (iii) compare the chemical properties of young embedded disks with mature disks, and establish the role of accretion shocks may have on their composition; (iv) determine the abundances of ice species, including the presence of more complex icy molecules, as well as their chemistry from envelopes to disks; and (v) find indirect evidence for the presence of young unseen (massive) planets. MOLDISK will train a next generation of mid-IR scientists, important for ELT and SPICA.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.