Innovating Works

MOLDISK

Financiado
Linking chemistry and physics in the planet forming zones of disks
The heavy elements (C, O, N) in exoplanetary atmospheres result from accretion of gas and impacts of icy pebbles and planetesimals in disks around young stars. The gas and dust, in turn, originate from the collapsing cloud that fo... The heavy elements (C, O, N) in exoplanetary atmospheres result from accretion of gas and impacts of icy pebbles and planetesimals in disks around young stars. The gas and dust, in turn, originate from the collapsing cloud that formed the star plus disk, with icy grains growing, settling and drifting in radially to the planet-forming zones. The inner disk (0.1-10 au) is a key region in planet formation, yet its physical and chemical structure is still poorly constrained observationally. The next years offer huge observational improvements at infrared wavelengths, which is the primary regime to study inner disks. Most notably, JWST offers unique diagnostics of gas and ice at unprecedented sensitivity and sharpness. The applicant has been heavily involved in planning and building of JWST-MIRI for the past 25 years, and co-leads GTO programs on protostars and protoplanetary disks. This proposal requests funding for 2 postdocs and 3 PhD students to carry out an interdisciplinary program that analyses MIRI data as soon as they arrive by mid-2022, and makes crucial connections with ALMA and VLT(I) data, state-of-the-art disk models developed by the applicant’s team, and laboratory experiments on ices. The specific goals are to (i) determine the chemical inventory of gas in inner disks, and measure C/O/N/H ratios in exoplanet birth environments; (ii) relate differences in chemical composition between disks to locations of dust traps, icy pebble sublimation at snowlines, and presence of cavities; (iii) compare the chemical properties of young embedded disks with mature disks, and establish the role of accretion shocks may have on their composition; (iv) determine the abundances of ice species, including the presence of more complex icy molecules, as well as their chemistry from envelopes to disks; and (v) find indirect evidence for the presence of young unseen (massive) planets. MOLDISK will train a next generation of mid-IR scientists, important for ELT and SPICA. ver más
31/12/2026
2M€
Duración del proyecto: 67 meses Fecha Inicio: 2021-05-05
Fecha Fin: 2026-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2021-05-05
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2020-ADG: ERC ADVANCED GRANT
Cerrada hace 4 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITEIT LEIDEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5