Light-Frozen Dynamic Covalent Synthesis of Organic Semiconducting Materials
Designing the materials of tomorrow requires the development of conceptually different synthetic methodology. Creating large conjugated molecular scaffolds often requires many synthetic steps, hindering their exploration and the d...
Designing the materials of tomorrow requires the development of conceptually different synthetic methodology. Creating large conjugated molecular scaffolds often requires many synthetic steps, hindering their exploration and the discovery of new organic semiconductors.
PhotoFreeze is a synthetic methodology that combines the best features of dynamic covalent chemistry and conventional covalent synthesis. With this novel chemical approach, a wide range of new functional materials will be developed, namely underrepresented electron-poor organic semiconductors, studied for their important optoelectronic properties. These materials have become essential to the development of organic electronic devices such as Organic Light Emitting Diodes (OLEDs), Organic Solar Cells (OSCs) or Organic Field Effect Transistors (OFETs) among others.
The key advantage of PhotoFreeze is that a complex dynamic covalent library of nanographene-based polyimines in exchange can be quickly and irreversibly frozen by visible-light irradiation via photocyclization. Such reaction retains and even strengthens the electronic conjugation between the starting materials. This method holds a great promise in the development of a wide variety of imide-based complex conjugated molecular architectures. By varying the reactants stoichiometry, composition, geometry and reaction conditions, a specific target molecule can be prepared in a one pot-sequence.
PhotoFreeze will be applied to synthesize various architectures including linear, helical, cyclic graphene nanoribbons, conjugated macrocycles and covalent organic framework. The methodology described here allows the synthesis of otherwise inaccessible or very tedious to prepare large and tuneable structures, and solves fundamental synthetic challenges. The proposed materials hold a great promise for novel high performances organic electronics and will be integrated into relevant devices, guiding the design of future n-type organic semiconductors.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.