Innovating Works

LESGO

Financiado
Light to Store chemical Energy in reduced Graphene Oxide for electricity generat...
Hydrogen is being pursued as a promising route to store energy, potentially mitigating the unpredictability of electricity generation based on renewables. Provided that more than 95% of H2 produced comes from breaking the C-H bond... Hydrogen is being pursued as a promising route to store energy, potentially mitigating the unpredictability of electricity generation based on renewables. Provided that more than 95% of H2 produced comes from breaking the C-H bond in hydrocarbons, it is natural to think that storing H bound to C may provide a long-term solution to this challenge. However, liquid hydrocarbons are not an optimal solution given that the process of extracting H from them involves CO2 emissions. LESGO proposes to store energy in the C-H bond of reduced graphene oxide (rGO-H). rGO-H can be stored safely, exhibits an energy density more than 100 times larger than that of H2 gas, and can be easily transported wherever the electricity generation is needed. LESGO will demonstrate that rGO-H can become an ideal energy stock at an affordable cost and used to supply electrical power on demand where it is required. In the complete cycle from sun light to electrical power the raw material for storage evolves from graphite back to graphite with no CO2 emissions in any intermediate step. LESGO’s consortium has been structured to bring together a highly interdisciplinary community that will enable the emergence of an ecosystem around a circular economy relying on the use of: widely available raw materials, storing energy in chemical bonds, using it in applications that require electrical power, and finally recovering the materials for a second or multiple lives. Industrial (GRAPHENEA, HST, GENCELL and CRF), academic (UDE and AALTO) or research center (IREC and ICFO) activities are completely interwoven throughout the entire implementation of LESGO. Within the duration of LESGO, CRF will develop an application in the transport sector where rGO-H will be tested as the fuel in a support battery providing a fast charging for current electric vehicles. When looking ahead beyond the consortium, DBT will foster the engagement of a wider stakeholder/public community to consolidate the ecosystem around rGO-H. ver más
30/04/2024
4M€
Duración del proyecto: 46 meses Fecha Inicio: 2020-06-23
Fecha Fin: 2024-04-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2024-04-30
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 4M€
Líder del proyecto
FUNDACIO INSTITUT DE CIENCIES FOTONIQUES Otra investigación y desarrollo experimental en ciencias naturales y técnicas asociacion
Perfil tecnológico TRL 4-5 50K