LIght for controlling Reactive Interactions in COld molecules
Ultracold molecules are the next frontier of quantum technologies: their rich internal structure and tunable long-range interactions enable the exploration of new regimes, unattainable with atomic platforms. Achieving this control...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2010-18799
FENOMENOS COHERENTES EN GASES DE MOLECULAS DIPOLARES ULTRAFR...
96K€
Cerrado
Epiquant
Exotic phases in Raman-coupled quantum gases
165K€
Cerrado
QuantMol
Ultracold polyatomic molecules for controlled chemistry and...
1M€
Cerrado
BES-2009-017204
HACIA TECNOLOGIAS CUANTICAS CON ATOMOS ULTRAFRIOS
43K€
Cerrado
BES-2009-024562
HACIA TECNOLOGIAS CUANTICAS CON ATOMOS ULTRAFRIOS
43K€
Cerrado
DyMETEr
Quantum Simulation with Long-Range-Interacting Dysprosium an...
2M€
Cerrado
Información proyecto LIRICO
Duración del proyecto: 63 meses
Fecha Inicio: 2023-09-12
Fecha Fin: 2028-12-31
Descripción del proyecto
Ultracold molecules are the next frontier of quantum technologies: their rich internal structure and tunable long-range interactions enable the exploration of new regimes, unattainable with atomic platforms. Achieving this control requires cooling to ultracold temperatures. However, ultracold molecular interactions are dominated by lossy chemical reactions. Chemical reactions hamper the quantum applications of molecular gases and our strategies to reach the ultracold temperature limit, including the realization of the holy grail of ultracold molecular physics: a Bose-Einstein Condensate of polar molecules. Recently, I successfully developed several shielding mechanisms to protect polar molecules from chemical reactions and exploited them to realize the first quantum degenerate Fermi gas of molecules by direct evaporation. In LIRICO, I will leverage on these previous results to control the chemical reactions of ultracold molecules and thus unlock the full potential of molecular quantum gases. A high-finesse optical cavity will be the fulcrum of LIRICO to tame chemical reactions. Strong light-molecule coupling will create new hybrid light-molecule states, so called molecular polaritons, that will display the ability to turn on-and-off a chemical reaction by simply controlling the molecule-cavity resonance. The addition of final-state sensitive detection methods, such as an ion-mass spectrometer, will allow to fully resolve the microscopic mechanisms that underpin ultracold reactions. I will steer the reaction dynamics at will and control the reaction product distribution with the cavity vacuum, thus realizing a paradigm-changing, fully quantum-mechanical catalysis method for controlling the transformation of molecular materials. Cavity-control of ultracold chemical reactions will open new avenues in the dissipation engineering of inelastic and out-of-equilibrium processes, which is crucial for the development of molecular quantum technologies.