Light elements in irons and metal-rich meteorites: Their isotopic distribution a...
Light elements in irons and metal-rich meteorites: Their isotopic distribution and evolution in the protoplanetary disk
Knowledge of the light element (H, C, N) characteristics of planetary building blocks is key to our understanding of the development of habitable conditions on Earth. Since 'magmatic' iron meteorites originate from the metallic co...
Knowledge of the light element (H, C, N) characteristics of planetary building blocks is key to our understanding of the development of habitable conditions on Earth. Since 'magmatic' iron meteorites originate from the metallic cores of the earliest, differentiated planetesimals, they may preserve a record of H, C, and N isotopic variations in the inner and outer solar system during the first stages of planetary accretion. Based on novel multi-light-element isotopic analyses of irons and other Fe-Ni alloy-rich meteorites and experimental simulations, project IRONIS aims to answer the fundamental questions of (i) how the distributions of H, C, and N (and their carrier phases) evolved in space and time within the earliest stages of the protoplanetary disk, and (ii) how H, C, and N were distributed between metals and silicates during planetesimal accretion, differentiation, and subsequent evolution. A major objective is to develop novel secondary ion mass spectrometry protocols for analyzing H, C, and N in situ in Fe-Ni alloy, and to combine these with 'bulk' N-noble gas analyses by static noble gas mass spectrometry. The originality and uniqueness of project IRONIS thus lies in the coupling of two state-of the-art analytical techniques, which allow the quantification of any solar gas and cosmogenic nuclide contributions. Only once the effects of these secondary components are understood, can spatiotemporal isotopic variations in the protoplanetary disk be investigated. In parallel, new cross-calibrated N analyses of experimental run products will provide constraints on the degree of N isotopic fractionation during alloy-silicate partitioning, and will permit us to assess if the N isotopic compositions of irons represent a primary feature of their parent bodies. Ultimately, by investigating the remnants of the first planetesimal populations, project IRONIS will provide new fundamental insights into the cosmochemical history and evolution of life-forming light elements.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.