Recent experimental developments across fields such as ultra-fast science, condensed matter and quantum optics have turned the electromagnetic radiation from traditional spectroscopic probe into a powerful tool to control and man...
Recent experimental developments across fields such as ultra-fast science, condensed matter and quantum optics have turned the electromagnetic radiation from traditional spectroscopic probe into a powerful tool to control and manipulate quantum materials and devices. A striking example is provided by light-induced superconductivity, observed in a number of compounds ranging from cuprates to fullerides and, more recently, organic materials, at temperatures far higher than in thermal equilibrium.
In addition, when quantum fluctuations of the light field trapped into a cavity become relevant, new horizons for control of quantum matter arise and new classes of hybrid polaritonic many-body states emerge. The aim of this project is to advance our theoretical understanding of light-control of quantum matter, far away from thermal equilibrium. I will focus on pumped organic molecular solids and ultracold fermions in driven optical lattices and devise robust nonequilibrium protocols to stabilize Eta-Pairing Superconductivity, an exotic, yet so far elusive, quantum phase of matter. I will provide a theoretical framework for light-induced superconductivity in organic materials, where recent experiments call for a radicallly new explanation. Motivated by upcoming experiments on cavity-controlled quantum materials, I will investigate how to induce emergent light-matter phenomena, such as superradiance or lasing in novel polaritonic platforms built with collective excitations of correlated quantum matter. To address the challenges that come with the CoNQuER proposal I will take advantage of the broad range of theoretical methods I developed over the past years to study fermionic and bosonic nonequilibrium quantum matter, ranging from Dynamical Mean Field Theories to powerful Time-Dependent Variational Approaches and Non-Perturbative Field Theory Methods and I will develop them further to deal with classical drives and coupling to dissipative cavity photon fields.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.