The coexistence of single-particle and collective degrees of freedom in atomic nuclei gives rise to various exotic phenomena. In nuclei with very asymmetric proton-to-neutron ratios, the strong nuclear interaction drives shell evo...
The coexistence of single-particle and collective degrees of freedom in atomic nuclei gives rise to various exotic phenomena. In nuclei with very asymmetric proton-to-neutron ratios, the strong nuclear interaction drives shell evolution which alters the orbital spacing, and in some cases even the ordering present in stable nuclei. In the absence of large gaps between orbitals, nuclei can take on non-spherical shapes and their excitations proceed through coherent and collective motion of many nucleons. Where and how collectivity emerges from the single-particle dynamics of protons and neutrons is an open question in nuclear structure physics that will be addressed with LISA in a unique way.
The aim of the LISA (LIfetime measurements with Solid Active targets) project is to develop a novel method for lifetime measurements in atomic nuclei. Lifetimes probe the collectivity of a nucleus through its electromagnetic transition properties. The experimental approach is based on active solid targets and will dramatically enhance the scope of measurements of excited-state lifetimes and thus transition probabilities achievable in exotic nuclei. Coupled to state-of-the-art gamma-ray tracking detectors such as AGATA, this novel instrument will overcome the present challenges of lifetimes measurements with low-intensity beams of unstable nuclei.
LISA will exploit the unique capabilities of FAIR, the future European fragmentation facility set to deliver the most exotic and highest intensity radioactive ion beams. LISA will greatly expand the physics program for nuclear structure studies at FAIR. Through the measurements made possible by LISA, our understanding of key aspects of single-particle and collective structures and their interplay will become much more developed. The results will have significant impact on the theoretical descriptions and modeling of atomic nuclei making their predictions more reliable.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.