Life like visual information processing for robust collision detection
To be able to detected collision efficiently is of vital importance for the survival of animals that are migrating at speed, especially for those flying in dense swarms like locusts. Vision plays a critical role in collision detec...
ver más
30/09/2016
UNIVERSITY OF LINC...
729K€
Presupuesto del proyecto: 729K€
Líder del proyecto
UNIVERSITY OF LINCOLN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto LIVCODE
Líder del proyecto
UNIVERSITY OF LINCOLN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
729K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
To be able to detected collision efficiently is of vital importance for the survival of animals that are migrating at speed, especially for those flying in dense swarms like locusts. Vision plays a critical role in collision detection for most animal species in a dynamic world. It is expected that in future, many human made machines, such like ground vehicles, mobile robots, and unmanned aerial vehicles, should all be able to detect and avoid collisions effectively as animals do. The challenge to achieve this is huge. Biological visual neural systems provide ideal models to achieve this goal.
LIVCODE consortium focuses on robust solutions for visual based collision detection. Taking the inspiration from biological visual systems, the consortium will bring neurobiologists, neural system modellers, chip designers, and robotic researchers together and complement each others’ research strengths via staff secondments, and jointly organised seminars and workshops. The consortium will investigate robust solutions for collision detection in the real world, through neural system modelling, neural model integration, chip realization and application, in order to build strong connections between the European institutions and partner institutions in a fast growing economy.
Six work packages (WPs) are designed to achieve the objectives of the project:
WP0: Project management,
WP1: Biological plausible visual neural system modelling,
WP2: Multiple visual neural systems integration,
WP3: VLSI neural vision chip design,
WP4: Neural vision systems for mobile robots and unmanned aerial systems, and
WP5: Dissemination, exploitation, business model.