LEJO: Learned Approaches for Spatial Join Processing.
Arguably 80% of all data is spatial. This calls for highly efficient and effective spatial data operations. Among them, spatial joins are frequently needed as a key primitive in various applications such as traffic management, rob...
Arguably 80% of all data is spatial. This calls for highly efficient and effective spatial data operations. Among them, spatial joins are frequently needed as a key primitive in various applications such as traffic management, robotics control, location-based services and even human brain modelling. However, existing spatial join approaches follow the traditional filter-and-refinement paradigm that is data distribution-oblivious. As a result, existing approaches are increasingly inefficient as spatial datasets to be joined become larger and more complex. The project LEJO is intended to make use of machine learning techniques to better understand the distributions of spatial data, and accordingly design learned approaches for highly efficient spatial join processing. Specifically, the research actions of LEJO include (1) learned approaches for binary spatial joins of memory-resident data; (2) learned approaches for binary spatial joins of disk-resident data; (3) learned approaches for multi-way spatial joins. The research actions will mainly concern analysis of the bottlenecks of existing approaches, design of distribution-aware space/data partitioning, design of learned model based indexes and join algorithms, and implementation and evaluation of the proposed techniques. These research actions, as well as project planning and management, will significantly strengthen the fellow’s research profile and manage skill. This in turn will put him in a considerably better position for future career development after the project. Moreover, a two-way knowledge transfer is expected as LEJO combines the fellow’s expertise in machine learning and the host university’s expertise in spatial data management. Focusing on the challenging intersection of spatial data management and machine learning, LEJO will not only advance the frontier research in the academia but also bring about potential impacts on many spatial data application domains in and beyond Europe.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.