Learning the interaction rules of antibody-antigen binding
Antibody-antigen binding is the basis of two fundamental biotherapeutic pillars: monoclonal antibodies (1) and vaccines (2). To accelerate therapeutics discovery, we need to perform antibody (Ab) and antigen (Ag) design in silico....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BIO2014-54164-R
DESARROLLO ASISTIDO POR COMPUTADORA DE VACUNAS DE EPITOPOS:...
109K€
Cerrado
REVAMP
REVisiting Antibody structures and repertoires through advan...
3M€
Cerrado
PROACTIVE
PROposing Action to ConTrol and Impede betacoronaVirus Emerg...
2M€
Cerrado
ImmuneSynapsEngagers
Immune Synapse Engagement as a Novel Approach for Cancer Imm...
2M€
Cerrado
BES-2012-053653
PROCESOS DE RECONOCIMIENTO MOLECULAR DE DIANAS TERAPEUTICAS...
43K€
Cerrado
vAMRes
Vaccines as a remedy for antimicrobial resistant bacterial i...
2M€
Cerrado
Información proyecto AB-AG-INTERACT
Duración del proyecto: 60 meses
Fecha Inicio: 2023-12-04
Fecha Fin: 2028-12-31
Líder del proyecto
Innovasjon Norge
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Descripción del proyecto
Antibody-antigen binding is the basis of two fundamental biotherapeutic pillars: monoclonal antibodies (1) and vaccines (2). To accelerate therapeutics discovery, we need to perform antibody (Ab) and antigen (Ag) design in silico. Specifically, we need to address a fundamental immuno-biotechnological challenge: understanding the interaction rules that predict Ab-Ag binding. Solving this challenge demands the convergence of biotechnology, computational structural biology, and machine learning (ML). My lab is one of the few worldwide to have this transdisciplinary expertise.
Research problem: Currently, the predictive performance of Ab-Ag binding is poor, and an understanding of the underlying rules of Ab-Ag binding is mostly absent. We previously showed that both unprecedentedly large datasets (>10^5 Ab-Ag sequence pairs) and extensive structural information on the Ab-Ag binding interface (paratope, epitope) are needed to increase prediction accuracy and recover binding rules.
Targeted breakthrough: To address the lack of large-scale Ab-Ag sequence and structural data, we will develop a method for high-throughput screening of >10^3 Ab paratope-mutated variants binding to >10^3 of Ag epitope-mutated variants, generating sequence data of Ab-Ag binding pairs at an unprecedented scale (>10^6 sequence Ab-Ag pairs). Structural information of the entirety of the sequence-based Ab-Ag binding data will be generated by building and innovating on recent breakthroughs in computational structural biology. To derive Ab-Ag interaction rules from the generated data, we will develop ML techniques for Ab-Ag binding prediction and rule recovery. We will demonstrate experimentally that we have begun to understand Ab-Ag interaction rules.
Impact: The proposed research generates the exact data necessary to recover the rules of Ab-Ag binding and provides a first groundbreaking insight into those rules, moving us closer to in silico on-demand antibody and vaccine design.