Learning network for Advanced Behavioural Data Analysis
BACKGROUND Recently, there has been a paradigm shift from the isolated focus on the health impact of single behaviours (physical activity, sedentary behaviour, sleep) to the combined health effects of 24/7 movement behaviours. Tec...
BACKGROUND Recently, there has been a paradigm shift from the isolated focus on the health impact of single behaviours (physical activity, sedentary behaviour, sleep) to the combined health effects of 24/7 movement behaviours. Technological advancements have led to wearable sensors providing rich time-series. Such large-scale data require novel analysis methods to provide detailed insight into the links between multidimensional 24/7 movement behaviour and health, potential relevant subgroups, and relevant behavioural characteristics to target in interventions. CONSORTIUM In LABDA, leading researchers in advanced movement behaviour data analysis at the intersection of data science, method development, epidemiology, public health, and wearable technology are brought together to address this challenge. AIM: To train a new generation of creative and innovative public health researchers with strong analytical and data science skills, and a deep understanding of all aspects of wearable sensor data analysis, that are able to develop innovative analysis methods and apply these in various contexts. WORK PLAN Via training-through-research, 13 doctoral fellows establish novel methods for advanced 24/7 movement behaviour data analysis and assess the added value of linking multimodal data. They develop a joint taxonomy to enable interoperability and data harmonisation. Results are combined in an open source LABDA toolbox of advanced analysis methods, including a decision tree to guide researchers and other users to the optimal method for their (research) question. IMPACT The open source toolbox of advanced analysis methods will lead to optimised, tailored public health recommendations and improved personal wearable feedback concerning 24/7 movement behaviour. After the project, LABDA fellows will be in an excellent position to pursue careers in academia (epidemiology, data science), commercial business (wearable technology, consultancy), or government (public health policy).ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.