Innovating Works

DEEP-RADAR

Financiado
Learning efficient millimeter wave radar imaging for autonomous vehicles
The emerging autonomous vehicle ecosystem is expected to grow with an almost 40% CAGR in the next decade hitting €485 billion by 2026 and exceeding €6 trillion in 2050. There is wide industry consensus that improved long-range dep... The emerging autonomous vehicle ecosystem is expected to grow with an almost 40% CAGR in the next decade hitting €485 billion by 2026 and exceeding €6 trillion in 2050. There is wide industry consensus that improved long-range depth sensing modalities are imperative for the viability of self-driving cars. State-of-the-art optical technologies are still prohibitively expensive, have insufficient temporal and spatial resolution, do not provide an accurate velocity reading, and are restricted to a shorter range in adverse weather conditions. Millimeter wave multiple-input multiple-output (MIMO) radars are an attractive alternative relying on a phased array of transmitting antennas and digital receivers, containing no moving parts, and able to penetrate adverse weather conditions. The weakness of this technology is the costly requirement for a large number of receiver channels to achieve sufficient spatial resolution. We will apply our novel methodology recently developed for medical imaging to overcome this challenge. We have demonstrated that learning the entire imaging pipeline in medical ultrasonography, including the shape of the transmitted pulses and the configuration of the receivers allows reducing the number of transmits by a factor of 3, while maintaining image quality comparable to traditional high-frame rate imaging protocols. Despite the different underlying physics, ultrasound and radar imaging share many conceptual similarities and have a similar mathematical description. Here, we intend to develop a proof-of-concept MIMO radar system demonstrating that by using the learned transmit patterns and image reconstruction pipeline, it is possible to halve the number of receive channels without compromising the image resolution and signal-to-noise ratio. Maintaining high resolution images using a smaller number of receiver channels will significantly reduce the cost of this technology and increase the commercial viability of automotive MIMO radars. ver más
31/03/2021
150K€
Duración del proyecto: 18 meses Fecha Inicio: 2019-09-18
Fecha Fin: 2021-03-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2021-03-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 150K€
Líder del proyecto
TECHNION ISRAEL INSTITUTE OF TECHNOLOGY No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5